G. LI, C. PIEMONTESI, Q. WANG, J. ZHU* (Ecole Polytechnique Federale de Lausanne, Switzerland)

Stereoselective Total Synthesis of Eburnane-Type Alkaloids Enabled by Conformation-Directed Cyclization and Rearrangement

Synthesis of Eburnane-Type Alkaloids

Significance: Zhu and co-workers present their recent efforts to access eburnane-type alkaloids using a highly divergent approach. The presented route features an \(\alpha \)-iminol rearrangement to access the trans-fused core in intermediate \(D \). The conformational bias allowed to close the remaining six-membered ring of the eburnane core in a diastereoselective fashion. The divergent design of the route uses key intermediates \(D \) and \(E \) to access four different eburnane alkaloids with good yields.

Comment: \(\alpha \)-iminol rearrangement of \(C \) led to key intermediate \(D \). Oxidative cleavage of the diol and reduction yielded hexacyclic aminal \(F \) as a single diastereomer. Lewis acid induced 1,2-alkyl shift of \(F \) furnished (±)-terengganensine B. Reduction to alcohol \(G \) and Brønsted acid mediated rearrangement allowed synthesis of (±)-larutensine. Oxidation of diol \(D \) to the corresponding diketone and subsequent oxidative bond cleavage gave pentacyclic amide \(I \). (±)-Melokhanine E was obtained in five additional steps and was then converted into (±)-eburnamonine by means of an aza-pinacol rearrangement.