Enantioselective Arylation of Tertiary Carbon-Centered Radicals

Significance: The asymmetric trapping of tertiary carbon-centered radicals represents a challenge in organic synthesis. The authors report an asymmetric coupling of tertiary radicals with L*Cu(II)–aryl species for the synthesis of enantiomerically enriched quaternary carbons. The tertiary carbon-centered radicals were generated via CF$_3$ radical addition. The trifluoromethylated products were obtained in moderate to high yields, and good to high enantioselectivities.

Comment: The scalability of this process was determined on a 4.0 mmol reaction, which provided the desired product with no erosion of enantioselectivity. Various derivatizations were performed on the trifluoromethylated products, such as cyclization (via nucleophilic aromatic substitution) and reduction of the carbonyl group. A radical trap experiment using CBr$_4$ generates an α-bromo amide in high yields, supporting the presence of benzylic radicals.

Selected examples:

<table>
<thead>
<tr>
<th>R$_1$</th>
<th>R$_2$</th>
<th>Yield</th>
<th>Enantiomeric Excess</th>
</tr>
</thead>
<tbody>
<tr>
<td>NC</td>
<td>Ph</td>
<td>87%</td>
<td>96% ee</td>
</tr>
<tr>
<td>Br</td>
<td>Ph</td>
<td>78%</td>
<td>93% ee</td>
</tr>
<tr>
<td>NO$_2$</td>
<td>Ph</td>
<td>82%</td>
<td>93% ee</td>
</tr>
<tr>
<td>F</td>
<td>N$_3$</td>
<td>51%</td>
<td>96% ee</td>
</tr>
</tbody>
</table>

*Reaction carried out in a 4.0 mmol scale

Derivatization products:

- 80% yield, 98% ee via S_NAr
- 78% yield, 98% ee via Li$_2$AH$_4$ reduction

Radical trap experiment:

- 80% yield

Key words: copper catalysis, trifluoromethylation, quaternary carbon centers

SYNFACTS Contributors: Mark Lautens, José F. Rodríguez

SYNFACTS 2019, 15(04), 0377 Published online: 19.03.2019

DOI: 10.1055/s-0037-1612346; Reg-No.: L01619SF

©Georg Thieme Verlag Stuttgart · New York 2019