Cyclohexane Desymmetrization via Rhodium-Catalyzed C–H Activation

Significance: The authors report a site- and stereoselective desymmetrization of cyclohexanes via a rhodium-complex-catalyzed C–H functionalization.

Comment: The method does not require any directing group and can be applied to unactivated C–H bonds, which presents a limitation for similar methods.

Selected examples:

<table>
<thead>
<tr>
<th>R1 = Ar, Het(Ar)</th>
<th>R2 = H, Alk</th>
<th>n = 0, 1, 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO2CH2CCl3</td>
<td>CO2CH2CCl3</td>
<td>Rh2(S-TPPTTL)4 (0.5 mol%)</td>
</tr>
<tr>
<td>CH2Cl2, 40 °C, 2 h</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

35 examples up to 89% yield up to 99% ee

Disubstituted cyclohexanes:

- 73% yield 97% ee
- 75% yield 92% ee
- 58% yield 96% ee
- 58% yield 98% ee
- 41% yield 83% ee

rr = 9.9:1
dr = 7.7:1

rr > 50:1
dr = 25:1

rr = 16:1
dr = 3.7:1

rr > 50:1
dr = 2:1

SYNFACTS Contributors: Paul Knochel, Simon Graßl

Synfacts 2019, 15(04), 0375 Published online: 19.03.2019
DOI: 10.1055/s-0037-1612309; Reg-No.: P01919SF