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Abstract An efficient method has been developed for the 1,2-hy-
dro(cyanomethylation) of alkenes, in which a cyanomethyl radical spe-
cies is generated from a cyanomethylphosphonium ylide by irradiation
with visible light in the presence of an iridium complex, a thiol, and
ascorbic acid. The cyanomethyl radical species then adds across the
C=C double bond of an alkene to form an elongated alkyl radical species
that accepts a hydrogen atom from the thiol to produce an elongated
aliphatic nitrile. The ascorbic acid acts as the reductant to complete the
catalytic cycle.
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Radical chemistry has undergone a renaissance since
the introduction of photoredox catalysis,1 and a wide vari-
ety of reagents are now available as competent precursors
to radical species. We recently reported that an ester-stabi-
lized phosphonium ylide2 can act as a precursor to an
(alkoxycarbonyl)methyl radical species3 when irradiated
with visible light in the presence of an iridium catalyst, a
thiol, and ascorbic acid.4 The radical species, substituted by
an electron-withdrawing alkoxycarbonyl group, adds across
the C=C double bond of an alkene to generate an elongated
alkyl radical. Subsequently, the thiol delivers a hydrogen
atom to the radical,5 producing an elongated aliphatic ester.6

We also examined the use of a cyanomethylphosphoni-
um ylide instead of an ester-stabilized phosphonium ylide.
The former act as the precursor of a cyanomethyl radical
species7–10 that, due to the electron-withdrawing nature of
the cyano group, is sufficiently electrophilic to attach to a
C=C double bond of an alkene, as in the case of an (alkoxy-
carbonyl)methyl radical.3,4,6 The appended alkyl radical

species is not as electrophilic as the original cyanomethyl
radical, and can therefore abstract a hydrogen atom from a
sulfanyl group5 to form an elongated aliphatic nitrile.

Initially, we applied the conditions optimized for the re-
action of an ester-stabilized phosphonium ylide4 to the re-
action of the cyanomethylphosphonium ylide 2 with 4-
phenylbut-1-ene (1a), and we obtained 6-phenylhexane-
nitrile (3a) as expected. The yield, however, was moderate
(43% by NMR), which led us to adapt the reaction condi-
tions slightly to fit the ylide 2. The elongated nitrile 3a was
produced in 94% NMR yield and 80% isolated yield when 1a
(0.50 mmol) was treated with 2 (1.0 mmol, 2.0 equiv) in 1:1
CH3CN/H2O (0.1 M) under irradiation by blue light-emitting
diodes (LEDs; 470 nm, 23 W) in the presence of fac-Ir(ppy)3
(1.0 mol%; ppy = 2-phenylpyridinato), C6F5SH (20 mol%),
ascorbic acid (10 equiv), and KHSO4 (3.0 equiv) at room
temperature for 40 hours (Scheme 1). No product resulting
from 1,2-addition in the opposite direction was observable
within the detection limits of 1H NMR (400 MHz). A larger-
scale experiment using 925 mg (7.0 mmol) of 1a also gave a
comparable yield of 3a (83% isolated yield), indicating the
scalability of the present reaction.

Scheme 1  1,2-Hydro(cyanomethylation) of alkene 1a with phosphoni-
um ylide 2

The formation of the product 3a can be reasonably ex-
plained by assuming the radical mechanism depicted in
Scheme 2, which is similar to that proposed in the case of
ester-stabilized phosphonium ylides.4 First, an acid/base
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reaction of 2 (pKaH = 6.9)11 with ascorbic acid (AscH2;
pKa= 4.0)12 generates the phosphonium ascorbate
[Ph3PCH2CN]+[AscH]– (4). This has an energetically low-ly-
ing σ* orbital for the C–P linkage. The Ir catalyst [fac-
Ir(ppy)3] [Ir(III)] is photoexcited by visible light to form the
excited species [Ir(III)]*. This then transfers a single electron
to the σ* orbital of the phosphonium ascorbate 4, giving rise
to the cyanomethyl radical species 5, along with PPh3 and
[Ir(IV)]+[AscH]–. Electrophilic addition of 5 to the C=C dou-
ble bond of alkene 1a affords the elongated secondary alkyl
radical species 6, which is less electrophilic than 5. Hydro-
gen-atom transfer from C6F5SH to 6 produces 3a and a thiyl
radical (C6F5S•).5 The [Ir(IV)]+ species and C6F5S• are reduced
back to the [Ir(III)] species and C6F5SH, respectively, by the
action of the ascorbate anion [AscH]–,13,14 which ultimately
becomes dehydroascorbic acid (DHA).15 The additive KHSO4
might act by suppressing undesirable formation of a thio-
late anion (C6F5S–) from C6F5SH.

Scheme 2  Plausible mechanism for the formation of 3a from alkene 1a 
and phosphonium ylide 2

Various alkenes 1 were subjected to the 1,2-hydro(cy-
anomethylation) reaction with 2 (Table 1). A wide range of
functional groups were tolerated to afford the correspond-
ing elongated aliphatic nitriles 3b–g in yields ranging from
74 to 88% (Table 1, entries 1–6). Not only monosubstituted
alkenes, but also polysubstituted alkenes, participated in
the reaction. Geminally disubstituted alkenes 1h and 1i
were suitable substrates (entries 7 and 8). Cyclic disubsti-
tuted alkenes 1j and 1k afforded the corresponding prod-
ucts 3j and 3k in yields of 59 and 79%, respectively (entries
9 and 10). The reaction of the acyclic vicinally disubstituted
alkenes (Z)- and (E)-1l was sluggish, and the reason for the
low yield of product 3l is unclear (entries 11 and 12). In the
case of trisubstituted alkene 1m, a mixture of diastereo-
mers of 3m was formed through nonstereoselective trans-
fer of a hydrogen atom to an intermediate tertiary radical

species (entry 13). Even the tetrasubstituted alkene 1n un-
derwent the reaction (entry 14). The 1,2-adduct 3o was ob-
tained in 18% NMR yield from styrene (1o), and the final re-
action mixture contained various products, probably as a
result of the high reactivity of the benzylic radical interme-
diates (entry 15).16

Table 1  1,2-Hydro(cyanomethylation) of Various Alkenes 1 with Phos-
phorus Ylide 2a
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Entry Alkene 1 Product 3 Yieldb (%)

 1 76

 2 82

 3 74
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 5 77

 6 88
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 9 59
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15 18c

a Reaction conditions: 1 (0.50 mmol), 2 (1.0 mmol), fac-Ir(ppy)3 (1.0 mol%), 
C6F5SH (20 mol%), ascorbic acid (5.0 mmol), KHSO4 (1.5 mmol), 1:1 
CH3CN/H2O (5.0 mL), r.t., 40 h, blue LEDs (470 nm, 23 W).
b Isolated yield.
c NMR yield with 1,1,2,2-tetrachloroethane as internal standard.
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In the case of 1-benzofuran (7), the cyanomethyl radical
species added regioselectively to form a benzylic radical
species, giving the 2-substituted 2,3-dihydro-1-benzofuran
8 (Scheme 3).

Scheme 3  The addition reaction to 1-benzofuran (7)

Notably, even a branched -cyanoethyl group was at-
tached to the C=C double bond of 1a when -cyanoethyl-
phophorus ylide 9 was employed (Scheme 4).

Scheme 4  The reaction with the α-cyanoethylphosphonium ylide 9

A similar reaction to form elongated aliphatic nitriles
from alkenes has been reported,8 in which a cyanomethyl
radical species is generated from CH3CN by using an excess
of dicumyl peroxide at a high temperature; these potential-
ly hazardous conditions significantly limit the synthetic
value of the method. The present reaction uses cyanometh-
ylphosphonium ylide, which is stable and easily accessible,
as the radical source, thereby providing a convenient meth-
od for synthesizing elongated aliphatic nitriles from
alkenes.17

Funding Information

This work was supported by JSPS KAKENHI [Scientific Research (S)
(15H05756) and (C) (16K05694)]JSPS KAKENHI (15H05756)JSPS KAKENHI (16K05694)

Acknowledgment

We thank Mr. H. Nikishima (Kyoto University) for his experimental
contribution at a preliminary stage.

Supporting Information

Supporting information for this article is available online at
https://doi.org/10.1055/s-0037-1612230. Supporting InformationSupporting Information

References and Notes

(1) For reviews, see: (a) Narayanam, J. M. R.; Stephenson, C. R. J.
Chem. Soc. Rev. 2011, 40, 102. (b) Skubi, K. L.; Blum, T. R.; Yoon,
T. P. Chem. Rev. 2016, 116, 10035. (c) Romero, N. A.; Nicewicz, D.
A. Chem. Rev. 2016, 116, 10075. (d) Twilton, J.; Le, C.; Zhang, P.;
Shaw, M. H.; Evans, R. W.; MacMillan, D. W. C. Nat. Rev. Chem.
2017, 1, 0052. (e) Lee, K. N.; Ngai, M.-Y. Chem. Commun. 2017,
53, 13093. (f) Marzo, L.; Pagire, S. K.; Reiser, O.; König, B. Angew.
Chem. Int. Ed. 2018, 57, 10034.

(2) For photoinduced reactions using phosphonium salts as the
radical source, see: (a) Lin, Q.-Y.; Xu, X.-H.; Zhang, K.; Qing, F.-L.
Angew. Chem. Int. Ed. 2016, 55, 1479. (b) Panferova, L. I.;
Tsymbal, A. V.; Levin, V. V.; Struchkova, M. I.; Dilman, A. D. Org.
Lett. 2016, 18, 996.

(3) For 1,2-bromo[(ethoxycarbonyl)methylation] of alkenes with
BrCH(R)CO2Et as the radical source, see: (a) Nguyen, J. D.;
Tucker, J. W.; Konieczynska, M. D.; Stephenson, C. R. J. J. Am.
Chem. Soc. 2011, 133, 4160. (b) Arceo, E.; Montroni, E.;
Melchiorre, P. Angew. Chem. Int. Ed. 2014, 53, 12064. (c) Cheng,
J.; Cheng, Y.; Xie, J.; Zhu, C. Org. Lett. 2017, 19, 6452.
(d) Magagnano, G.; Gualandi, A.; Marchini, M.; Mengozzi, L.;
Ceroni, P.; Cozzi, P. G. Chem. Commun. 2017, 53, 1591. For a
recent review, see: (e) Courant, T.; Masson, G. J. Org. Chem.
2016, 81, 6945.

(4) Miura, T.; Funakoshi, Y.; Nakahashi, J.; Moriyama, D.;
Murakami, M. Angew. Chem. Int. Ed. 2018, 57, 15455.

(5) For the use of thiols as sources of electrophilic hydrogen atoms
and the subsequent reactions between the resulting thiyl radi-
cals and ascorbate anions, see: Guo, X.; Wenger, O. S. Angew.
Chem. Int. Ed. 2018, 57, 2469.

(6) For a similar photoinduced elongation of alkenes using BrCH2-
CO2Et as the radical source, see: Sumino, S.; Fusano, A.; Ryu, I.
Org. Lett. 2013, 15, 2826.

(7) For a review on 1,2-addition reactions with alkanenitriles as
radical sources, see: Chu, X.-Q.; Ge, D.; Shen, Z.-L.; Loh, T.-P. ACS
Catal. 2018, 8, 258.

(8) For 1,2-hydro(cyanomethylation) of alkenes by using CH3CN as
the radical source, see: (a) Li, Z.; Xiao, Y.; Liu, Z.-Q. Chem.
Commun. 2015, 51, 9969. See also: (b) Bruno, J. W.; Marks, T. J.;
Lewis, F. D. J. Am. Chem. Soc. 1981, 103, 3608. (c) Sonawane, H.
R.; Bellur, N. S.; Shah, V. G. J. Chem. Soc., Chem. Commun. 1990,
1603.

(9) For 1,2-difunctionalization of alkenes by using CH3CN as the
radical source, see: (a) Bunescu, A.; Wang, Q.; Zhu, J. Angew.
Chem. Int. Ed. 2015, 54, 3132. (b) Chatalova-Sazepin, C.; Wang,
Q.; Sammis, G. M.; Zhu, J. Angew. Chem. Int. Ed. 2015, 54, 5443.
(c) Lan, X.-W.; Wang, N.-X.; Bai, C.-B.; Lan, C.-L.; Zhang, T.; Chen,
S.-L.; Xing, Y. Org. Lett. 2016, 18, 5986. (d) Wu, X.; Riedel, J.;
Dong, V. M. Angew. Chem. Int. Ed. 2017, 56, 11589. (e) Liu, Y.-Y.;
Yang, X.-H.; Song, R.-J.; Luo, S.; Li, J.-H. Nat. Commun. 2017, 8,
14720.

(10) For 1,2-bromo(cyanomethylation) of alkenes by using BrCH2CN
as the radical source, see: (a) Voutyritsa, E.; Triandafillidi, I.;
Kokotos, C. G. ChemCatChem 2018, 10, 2466. (b) Voutyritsa, E.;
Nikitas, N. F.; Apostolopoulou, M. K.; Gerogiannopoulou, A. D.
D.; Kokotos, C. G. Synthesis 2018, 50, 3395; See also refs. 3 (b)
and 3 (d).

(11) Zhang, X.-M.; Bordwell, F. G. J. Am. Chem. Soc. 1994, 116, 968.
(12) Creutz, C. Inorg. Chem. 1981, 20, 4449.
(13) Warren, J. J.; Mayer, J. M. J. Am. Chem. Soc. 2010, 132, 7784.

+

Ph3P CHCN

2 (2.0 equiv)

7

fac-Ir(ppy)3 (1.0 mol%)

C6F5SH (20 mol%)

ascorbic acid (10 equiv)

r.t., 40 h, blue LEDs

KHSO4, CH3CN/H2O 8 50%

O

O CN

Ph CN

1a
Ph

10 32%

+

9 (5.0 equiv)

fac-Ir(ppy)3 (2.0 mol%)

C6F5SH (20 mol%)

ascorbic acid (10 equiv)

r.t., 64 h, blue LEDs

KHSO4, CH3CN/H2OPh3P
CN

CH3

CH3
Georg Thieme Verlag  Stuttgart · New York — Synlett 2019, 30, 511–514



514

T. Miura et al. LetterSyn  lett
(14) For photocatalytic reactions using ascorbic acid as the reduc-
tant, see: (a) Maji, T.; Karmakar, A.; Reiser, O. J. Org. Chem. 2011,
76, 736. (b) Wallentin, C.-J.; Nguyen, J. D.; Finkbeiner, P.;
Stephenson, C. R. J. J. Am. Chem. Soc. 2012, 134, 8875.
(c) Supranovich, V. I.; Levin, V. V.; Struchkova, M. I.; Dilman, A.
D. Org. Lett. 2018, 20, 840; See also ref. 5.

(15) Kerber, R. C. J. Chem. Educ. 2008, 85, 1237.
(16) The reactions of terminal alkynes such as 4-phenylbut-1-yne

gave complex mixtures of products, in which the corresponding
1,2-hydro(cyanomethylation) product (a β,γ-unsaturated
nitrile) was present in ~10% yield as a 1:1 mixture of E- and Z-
isomers.

(17) 6-Phenylhexanenitrile (3a); Typical Procedure
A vial (2–5 mL; Biotage, Fisher Scientific) equipped with a
stirrer bar was charged with the phosphorus ylide 2 (302 mg,
1.00 mmol), fac-Ir(ppy)3 (3.30 mg, 0.005 mmol, 1.0 mol%),
ascorbic acid (882 mg, 5.00 mmol), and KHSO4 (207 mg, 1.52
mmol). The vial was then flushed with argon gas and quickly

capped with a Teflon septum. 4-Phenylbut-1-ene (1a, 67.6 mg,
0.51 mmol), C6F5SH (20.0 mg, 0.100 mmol, 20 mol%), distilled
CH3CN (2.5 mL), and H2O (2.5 mL; degassed with argon gas for
30 min) were added from a syringe, and the mixture was stirred
vigorously for 40 h under blue LED lights (470 nm, 23 W) while
the vial was cooled with a fan. The mixture was then diluted
with brine (25 mL) and extracted with CH2Cl2 (3 × 25 mL). The
organic phase was dried (Na2SO4), filtered, and concentrated
under reduced pressure to give a residue that was purified by
column chromatography [silica gel, hexane/EtOAc (9:1)] to give
a colorless oil; yield: 70.7 mg (0.41 mmol, 80%).
IR (ATR): 2936, 2245, 1454 cm–1. 1H NMR (400 MHz, CDCl3):
δ = 1.45–1.53 (m, 2 H), 1.63–1.73 (m, 4 H), 2.33 (t, J = 7.2 Hz, 2
H), 2.63 (t, J = 7.6 Hz, 2 H), 7.16–7.21 (m, 3 H), 7.26–7.31 (m, 2
H). 13C NMR (100 MHz, CDCl3): δ = 17.1, 25.3, 28.3, 30.5, 35.5,
119.7, 125.8, 128.3, 141.9. HRMS (EI+): m/z [M]+ calcd for
C12H15N: 173.1204; found: 173.1205.
Georg Thieme Verlag  Stuttgart · New York — Synlett 2019, 30, 511–514


