J. H. EDWARDS, W. J. FEAST* (DURHAM UNIVERSITY, UK) A New Synthesis of Poly(acetylene)

Polymer 1980, 21, 595–596.

Heat On, Heat Off: A Synthesis of Polyacetylene Revisited

Monomer synthesis:

$$\begin{array}{c|c}
\hline
 & & & & \\
\hline
 & & & \\$$

trans-Polyacetylene formation:

Significance: Polyacetylene (6) is the simplest organic conducting polymer and was pivotal to the development of the field organic electronics, an impact that was recognized with a Nobel prize in 2000. Sensitivity to atmospheric conditions stymied early efforts towards the investigation and application of this material. Edwards and Feast provided a method for the casting and controlled formation of *trans*-polyacetylene using a creative ROMP and thermal cycloreversion of polymer **5**.

Comment: Monomer 4 was prepared by the cycloisomerization of cyclooctatetraene (1) and subsequent Diels–Alder reaction with perfluorobutyne (3). Ring-opening metathesis of 4 with a titanium tetrachloride/trimethylaluminum catalyst, stereoselectively provides polymer 5. At room temperature, this polymer decomposed to provide *trans*-polyacetylene (6) and 1,2-bistrifluoromethyl benzene (7) over several days. Heating under vacuum accelerates this process, providing 6in three hours.

Category

Synthesis of Materials and Unnatural Products

Key words

polyacetylene
conducting polymers
ROMP
polymerization
retrocyclization

