Enantioselective Synthesis of cis- and trans-Borocyclopropylmethanol: Simple Building Blocks To Access Heterocycle-Substituted Cyclopropylmethanols

Saheer H. Siddiqui
Chandrasekhar Navuluri
André B. Charette∗

FRQNT Centre in Green Chemistry and Catalysis, Department of Chemistry, Université de Montréal, P.O. Box 6128, Station Downtown, Montreal, Quebec, H3C 3J7, Canada
andre.charette@umontreal.ca

Abstract An enantioselective and non-oxidative methodology was developed to obtain enantioenriched cyclopropyl boronates using a diethanolamine-promoted selective decomplexation of dioxaborolane. The non-oxidative decomplexation of the dioxaborolane ligand from the cyclopropymethoxides species formed in the dioxaborolane-mediated Simmons–Smith cyclopropanation reaction provided the enantioenriched CIDA-based (CIDA = N-cyclohexyliminodiacetic acid) borocyclopropane in 92% yield and 95:6:4:4 er. A robustness screen has shown diethanolamine to be compatible with esters, carbamates and N-heterocycles, providing a tool to access enantioenriched cyclopropanes carrying not only base-sensitive but oxidizable functional groups as well. Diethanolamine was found to be compatible with the modified zinco-cyclopropanation reaction of allylic alcohol to remove residual di-oxaborolane from the corresponding cis-N-heterocycle cyclopropylmethanol, thereby leading to improved yields.

Key words borocyclopropanes, heterocycles, Simmons–Smith reaction, zinco-cyclopropanation, cross-coupling

Cyclopropane motifs are ubiquitous in Nature and are widely employed in pharmaceutical and agrochemically relevant compounds. Cyclopropylboronic acids and derivatives are excellent synths for the rapid introduction of the cyclopropyl motif into complex molecules. Suzuki cross-coupling of these cyclopropylboronic acids with heteroaryls provide heteroaryl-substituted cyclopropanones, which serve as chiral cores in many natural products and biologically active drug candidates. For example, thiazolopyrimidinones comprising the cyclopropane group (Figure 1, 1) serve as N-methyl-D-aspartate (NMDA) receptor activity modulators and rely on racemic borocyclopropylmethanols as optimal synths for the introduction of cyclopropane groups in a racemic fashion. Similarly, borocyclopropane building blocks have been employed in the synthesis of cyclopropane-containing drug candidates (Figure 1, 2–4), where the products are delivered as racemates requiring chiral HPLC separation. Although an array of methodologies to access substituted borocyclopropane sub-units in a diastereoselective manner are available, access to optically active borocyclopropane sub-units is often limited. Thus far, asymmetric cyclopropanation methodologies to access enantioenriched borocyclopropanes include palladium-catalyzed cyclopropanation of chiral vinylboronates via diazo decomposition, and copper-catalyzed carbene transfer of ethyldiazoacetate to alkenylboronates for the preparation of chiral 1,2,3-trisubstituted cyclopropanes (Scheme 1, part i). The in situ preparation of enantioenriched borocyclopropanes via the zinco-cyclopropanation of substituted allylic alcohols is an alternative to the use of stoichiometric quantities of diazo compounds (Scheme 1, part ii). The Simmons–Smith reaction has also been employed for the synthesis of chiral vinylpinacolboronates as separable racemic diastereomeric mixtures.

The Simmons–Smith cyclopropanation mediated by di-oxaborolane 11 is a versatile methodology for the conversion of allylic alcohols and allylic ethers into an array of diversely substituted cyclopropane motifs in high enantioselectivities. We report herein the first enantioselective Simmons–Smith cyclopropanation of boronate-bearing allylic alcohols for the preparation of enantioenriched borocyclopropane building blocks. Pinacolate analogues have often been used in borocyclopropanation methodologies. Many of these derivatives are oils and are prone to decomposition through protodeboronation, and are hence recurrently deemed ‘unstable’ boronic acids. In contrast, cyclopropyltrifluoroborates are solids and display a reduced propensity to undergo protodeboronation, but have limited solubility in moderately polar solvents.
N-Methyliminodiacetic acid (MIDA) boronates have emerged as efficient building blocks due to their air stability, crystallinity, monomeric constitution, and compatibility with silica gel chromatography. The most attractive properties of MIDA boronates are their reversibly attenuated reactivity towards anhydrous cross-coupling conditions and compatibility with a wide range of reagents, which make them ideal coupling candidates for late-stage functionalization. For these reasons, we envisioned the use of enantioselective Simmons–Smith cyclopropanation of MIDA boronate bearing allylic alcohol to prepare the corresponding cyclopropylmethanol, which could serve as a robust building block for diversification reactions and the synthesis of cyclopropane-containing chiral cores in complex molecules discussed previously (Figure 1). Our initial Simmons–Smith cyclopropanation attempt was thwarted by two aspects of the reaction: (a) the insolubility of the vinyl MIDA boronate bearing the (E)-allylic alcohol in the solvents typically used for dioxaborolane-mediated cyclopropanations, such as dichloromethane, chloroform, and chlorobenzene and (b) decomposition of the boronate under the oxidative conditions used for the removal of dioxaborolane.

To improve solubility, we proposed the replacement of the N-methyl substituent in MIDA boronates with a cyclohexyl group to prepare N-cyclohexyliminodiacetic acid (CIDA) protected boronates. The CIDA-bearing boronate allylic alcohol 15a (Scheme 2) can be synthesized on a multigram scale in three steps starting from TBS-protected vinyl-Bpin bearing (E)-allylic alcohol in 80% overall yield. During the synthesis of the free allylic alcohol 15a, we were pleased to find orthogonal deprotection conditions for boronate substrates bearing silyl protecting groups. The in situ deprotection of the TBS group was a result of a mixture of DMSO, used as a cosolvent, and minimal amounts of water, generated during the CIDA protection, which provided the CIDA boronate allylic alcohol in 20% yield and the TBS-protected allylic alcohol in 60% yield. Heating the crude reaction mixture in DMSO/water (5:1) enhanced the overall yield to 80%. Once obtained, we were pleased to find that the CIDA allylic alcohol 15a was readily soluble in dichloromethane.

The cyclopropanation reaction with 15a using Zn(CH2I)2 (2.2 equiv) and dioxaborolane 11 (1.1 equiv) proceeded smoothly with full conversion of the starting material. However, isolation of the cyclopropylmethanol by decomposition of the chiral dioxaborolane ligand using hydrogen peroxide and sodium hydroxide led to the complete hydrolysis of the product (Scheme 2). Attempts to use less equivalents of peroxide did not prevent the hydrolysis of the product. The traditional workup conditions for the dioxaborolane-mediated cyclopropanation involves the use of 30% hydrogen peroxide and 2 M sodium hydroxide or the use of highly basic 5 M aqueous potassium hydroxide to decomplex the dioxaborolane from the cyclopropyl methoxide species formed in the reaction. Indeed, the hydrolysis of alkyltriolborates is known to involve harsh oxidative conditions, resulting in narrow functional group compatibility and challenging purifications.

Considering that MIDA boronates are highly labile to aqueous basic conditions and the presence of strong oxidants, we investigated a non-oxidative process for selective decomplexation of the tartaramide–boronate complex in the presence of the CIDA group in intermediate 16. Diethanolamine (DEA) and ethanalamine have been used for the transesterification of certain pinacolboronate esters.
bearing electron-withdrawing groups. However, Szabó recently observed that the diethanolamine cyclic boronate deprotection protocol is unsuccessful for transesterification of some electron-deficient vinylpinacolate analogues. To the best of our knowledge, DEA has not been used for the transesterification of alkyltripinaborates. We investigated the use of DEA for the transesterification of the (cyclopropylmethanol)boronate complexes. After extensive screening for isolation conditions, the decomplexation of the boronate complexes. After extensive screening for isolation conditions, the decomplexation of the boronate complexes. After extensive screening for isolation conditions, the decomplexation of the boronate complexes. After extensive screening for isolation conditions, the decomplexation of the boronate complexes.

For comparative purposes, BPin-substituted allylic alcohol 15b was subjected to the Simmons-Smith cyclopropanation conditions. After optimization, the pinacol-protected borocyclopropane 14 was obtained in 21% yield with a reproducible 90.9:9.1 er (Scheme 2). The low yield of the pinacol derivative is likely due to the transesterification of the pinacol ligand with excess DEA or due to decomposition by flash chromatography of pinacolboronates. We evaluated the robustness of the DEA decomplexation process using Glorius’s intermolecular screening tool for the cyclopropanation of allylic alcohol 17 with five substrates containing base-sensitive functionalities, such as esters and carbamates, as well as indole, to study an example of an oxidizable group (Scheme 3).

The recovery of the additives is consistently higher with the use of the non-oxidative conditions. The superiority is striking in the case of substrate 19c (Scheme 3) bearing the sensitive O-acetyl group. For highly base-sensitive groups, the N-methyl DEA workup is recommended for better yields. Indole was recovered in 96% yield when using the DEA decomplexation, in comparison to 68% recovered when using the traditional decomplexation procedure, demonstrating the use of DEA-promoted cleavage of dioxaborolane to obtain oxidation-sensitive N-heterocycle-substituted cyclopropanes, which are typically incompatible with the traditional conditions.

Based on the robustness screen of DEA, cyclopropanation of substrate 20 bearing the sensitive O-acetyl group was attempted (Scheme 4). Cyclopropylmethanol 21 bearing the acetate group was obtained in 76% isolated yield. During analysis of the byproducts, it was determined that the moderate yield was not a result of the decomposition of the acetyl allylic alcohol, but due to the lower reactivity of the substrate, evidenced by the recovery of the starting material in 24% isolated yield. Thus, the DEA-promoted decomplexation procedure proved to be quite versatile, and functional groups such as esters, carbamates, and others were shown to be compatible under the new non-oxidative conditions for the decomplexation of 11.
MIDA boronates. immediately prior to the reaction can be as effective as the should be noted that cyclopropylboronic acids prepared withides with we evaluated a series of cross-couplings of heteroaryl ha-
romatic or heteroaromatic systems.24 Heterocycles are the effective method to integrate the cyclopropyl moiety into the Suzuki–Miyaura reaction, which is arguably the most turned our attention to the cross-coupling conditions for the CIDA borocyclopropane derivatives in hand, we noticed that the cis analogues. Attempts to synthesize the CIDA-bearing cis-boronic allylic alcohols failed due to lack of stability. To overcome these challenges, we took an in situ approach to obtain the enantiopure borocyclopropylmethanol via the enantioselective zinco-cyclopropanation reaction of allylic alcohol followed by cross-coupling with N-heterocycles to prepare cis-N-heterocycle-substituted cyclopropanes (Scheme 6). A modified procedure was employed to enhance the yield of the zinco-cyclopropanation of the non-substituted allylic alcohol substrate. Treatment of allylic alcohol with the gem-dizinc carbenoid in the presence of chiral ligand led to the cyclic boronate, which was subjected to Suzuki cross-coupling. In the case of allylic alcohol, the product often contained residual dioxborabore or complexed dioxborolane, affecting the yield of the reaction. To overcome the lower yield arising from the residual complexed dioxborolane, the non-oxidative DEA-promoted decomplexation was applied to the crude reaction mixture to obtain the completely decomplexed cis isomer. Purification of the crude reaction mixture provided the desired N-heterocycle-substituted cyclopropanes in good yields and excellent enantioselectivity (Scheme 6).

In conclusion, a non-oxidative and enantioselective methodology has been developed that not only allows for the preparation of enantiopure borocyclopropane building blocks, but also provides a tool for the decomposition of boron-ligated intermediates in the zinco-cyclopropanation reaction. Using this methodology, a novel air-stable enantioenriched CIDA borocyclopropane building block was obtained in 92% yield and 95.6:4.4 er compared to the pina-
colborocyclopropane obtained in 21% yield and 90.9:9.1 er. Efficient cross-coupling conditions for the CIDA borocyclopropane allowed access to enantioenriched trans-N-hetero
cycle-substituted cyclopropanes in excellent yields. The non-oxidative DEA decomplexation was also applied in the zinco-cyclopropanation reaction to allow access to the fully decomplexed cis-N-heterocycle-substituted cyclopropanes, resulting in higher yields. This work demonstrates a robust and mild alternative for dioxborolane-mediated cyclopropanations, broadening compatibility with highly base-sensitive and oxidizable substrates.

The cross coupling of (95.6:4.4 er) with five heteroaryl bromides in the presence of (5 mol%), (10 mol%) and aqueous potassium triphosphate afforded the cross-coupled cyclopropylmethanols in excellent yields (Scheme 5). When the same coupling reactions were performed with the Bpin-substituted cyclopropane (90.9:9.1 er), lower yields were obtained even though cyclopropane was freshly prepared. The higher cross-coupling efficiency of the CIDA borocyclopropane compared to that of the Bpin-borocyclopropanes can be attributed to stability and controlled the hydrolytic character of tetracoordinate boronates in cross-coupling reactions.19 Moreover, enantioenriched cyclopropane exhibited benchtop air-stability even after 5 months, while borocyclopropane partially decomposed (by about 20%) over 3 weeks.

Having evaluated an approach to access trans-N-hetero
cycle-substituted cyclopropanes, we turned our attention to the ciscyclopropanes. Attempts to synthesize the CIDA-bearing cis-boronic allylic alcohols failed due to lack of stability. To overcome these challenges, we took an in situ approach to obtain the disubstituted borocyclopropylmethanol via the enantioselective zinco-cyclopropanation reaction of allylic alcohol followed by cross-coupling with N-heterocycles to prepare cis-N-heterocycle-substituted cyclopropanes (Scheme 6). A modified procedure was employed to enhance the yield of the zinco-cyclopropanation of the non-substituted allylic alcohol substrate. Treatment of allylic alcohol with the gem-dizinc carbenoid in the presence of chiral ligand led to the cyclic boronate, which was subjected to Suzuki cross-coupling. In the case of allylic alcohol, the product often contained residual dioxborabore or complexed dioxborolane, affecting the yield of the reaction. To overcome the lower yield arising from the residual complexed dioxborolane, the non-oxidative DEA-promoted decomplexation was applied to the crude reaction mixture to obtain the completely decomplexed cis isomer. Purification of the crude reaction mixture provided the desired N-heterocycle-substituted cyclopropanes in good yields and excellent enantioselectivity (Scheme 6).

In conclusion, a non-oxidative and enantioselective methodology has been developed that not only allows for the preparation of enantiopure borocyclopropane building blocks, but also provides a tool for the decomposition of boron-ligated intermediates in the zinco-cyclopropanation reaction. Using this methodology, a novel air-stable enantioenriched CIDA borocyclopropane building block was obtained in 92% yield and 95.6:4.4 er compared to the pina
colborocyclopropane obtained in 21% yield and 90.9:9.1 er. Efficient cross-coupling conditions for the CIDA borocyclopropane allowed access to enantioenriched trans-N-hetero
cycle-substituted cyclopropanes in excellent yields. The non-oxidative DEA decomplexation was also applied in the zinco-cyclopropanation reaction to allow access to the fully decomplexed cis-N-heterocycle-substituted cyclopropanes, resulting in higher yields. This work demonstrates a robust and mild alternative for dioxborolane-mediated cyclopropanations, broadening compatibility with highly base-sensitive and oxidizable substrates.

The cross coupling of (95.6:4.4 er) with five heteroaryl bromides in the presence of (5 mol%), (10 mol%) and aqueous potassium triphosphate afforded the cross-coupled cyclopropylmethanols in excellent yields (Scheme 5). When the same coupling reactions were performed with the Bpin-substituted cyclopropane (90.9:9.1 er), lower yields were obtained even though cyclopropane was freshly prepared. The higher cross-coupling efficiency of the CIDA borocyclopropane compared to that of the Bpin-borocyclopropanes can be attributed to stability and controlled the hydrolytic character of tetracoordinate boronates in cross-coupling reactions. Moreover, enantioenriched cyclopropane exhibited benchtop air-stability even after 5 months, while borocyclopropane partially decomposed (by about 20%) over 3 weeks.

Having evaluated an approach to access trans-N-hetero
cycle-substituted cyclopropanes, we turned our attention to the ciscyclopropanes. Attempts to synthesize the CIDA-bearing cis-boronic allylic alcohols failed due to lack of stability. To overcome these challenges, we took an in situ approach to obtain the disubstituted borocyclopropylmethanol via the enantioselective zinco-cyclopropanation reaction of allylic alcohol followed by cross-coupling with N-heterocycles to prepare cis-N-heterocycle-substituted cyclopropanes (Scheme 6). A modified procedure was employed to enhance the yield of the zinco-cyclopropanation of the non-substituted allylic alcohol substrate. Treatment of allylic alcohol with the gem-dizinc carbenoid in the presence of chiral ligand led to the cyclic boronate, which was subjected to Suzuki cross-coupling. In the case of allylic alcohol, the product often contained residual dioxborabore or complexed dioxborolane, affecting the yield of the reaction. To overcome the lower yield arising from the residual complexed dioxborolane, the non-oxidative DEA-promoted decomplexation was applied to the crude reaction mixture to obtain the completely decomplexed cis isomer. Purification of the crude reaction mixture provided the desired N-heterocycle-substituted cyclopropanes in good yields and excellent enantioselectivity (Scheme 6).

In conclusion, a non-oxidative and enantioselective methodology has been developed that not only allows for the preparation of enantiopure borocyclopropane building blocks, but also provides a tool for the decomposition of boron-ligated intermediates in the zinco-cyclopropanation reaction. Using this methodology, a novel air-stable enantioenriched CIDA borocyclopropane building block was obtained in 92% yield and 95.6:4.4 er compared to the pina
colborocyclopropane obtained in 21% yield and 90.9:9.1 er. Efficient cross-coupling conditions for the CIDA borocyclopropane allowed access to enantioenriched trans-N-hetero
cycle-substituted cyclopropanes in excellent yields. The non-oxidative DEA decomplexation was also applied in the zinco-cyclopropanation reaction to allow access to the fully decomplexed cis-N-heterocycle-substituted cyclopropanes, resulting in higher yields. This work demonstrates a robust and mild alternative for dioxborolane-mediated cyclopropanations, broadening compatibility with highly base-sensitive and oxidizable substrates.
Unless otherwise stated, all glassware was oven-dried and/or was flame-dried prior to use and all reactions were set up and carried out under an argon atmosphere27 with the exclusion of moisture. Anhydrous solvents were obtained either by filtration through drying columns on a Glass Contour system (Irvine, CA) (benzene and THF) or by distillation over calcium hydride (Et3N, pyridine, CH2Cl2) or sodium metal. Absolute EtOH, glacial acetic acid, and Ac2O were used as is under an argon atmosphere27 with the exclusion of moisture. Anhydrous ethyl iodide (EtI)·2Et2O (4.2 equiv) was purchased from Chem-Impex International Inc. unless otherwise stated. All reagents for Suzuki cross-coupling reactions and catalysts were handled in the glovebox. All reagents used were purified using standardized protocols.

(E)-6-Cyclohexyl-2-(3-hydroxyprop-1-en-1-yl)-1,3,6,2-dioxazaborocane-4,8-dione (15a)

To a dry microwave vial, (E)-2-[3-{(tert-butyldimethylsilyl)oxy}prop-1-en-1-yl]-6-cyclohexyl-1,3,6,2-dioxazaborocane-4,8-dione (15aa; 440 mg, 1.10 mmol) was added, followed by DMSO (14 mL) and H2O (2.8 mL). The vial was sealed and placed under microwave irradiation for 1 h at 130 °C. The reaction mixture was cooled, transferred into a 40 mL flask, diluted with H2O (10 mL) and lyophilized until dryness; this gave 15a.

Yield: 313 mg (99%); white solid; Rf = 0.3 (CH2Cl2/MeCN, 1:1); mp 117–118 °C.

IR (neat): 2939, 2860, 1740, 1644, 1448, 1326, 1290, 1244 cm–1.

1H NMR (400 MHz, acetone-25): δ = 6.27 (dd, J = 13.5, 4.1 Hz, 1 H), 5.82 (d, J = 17.8 Hz, 1 H), 4.20–4.13 (m, 2 H), 3.94 (d, J = 16.8 Hz, 2 H), 3.74 (s, 1 H), 3.26 (dd, J = 12.1, 6.1 Hz, 1 H), 2.81 (s, 2 H), 1.89 (d, J = 12.5 Hz, 2 H), 1.71–1.49 (m, 4 H), 1.44–1.25 (m, 4 H).

13C NMR (126 MHz, CDCl3): δ = 169.5 (C), 146.3 (C), 123.9, 67.0, 64.5, 56.5 (C), 27.4 (C), 25.51, 25.46.

11B NMR (400 MHz, acetone-d6): δ = 10.7.

(E)-3-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)prop-2-en-1-ol (15b)

To a stirred solution of (E)-tert-butyldimethyl[3-{(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)allyloxy]silane28 (12.0 g, 40.2 mmol) in EtoH (201 mL) was added dropwise a 3 M solution of trichloroacetic acid in EtoH (46.3 mL). The reaction mixture was stirred for 12 h. The reaction mixture was concentrated, and the residue was diluted with EtOAc (20 mL) and washed with sat. aq NaHCO3 (2 × 15 mL). The organic layer was dried with Na2SO4 and concentrated under reduced pressure to provide a crude brown oil, which was purified by flash chromatography (silica gel, EtOAc/hexanes, 3:7).

Yield: 4.20 g (57%); yellow oil; Rf = 0.4 (EtOAc/hexane, 3:7).

IR (neat): 3420, 2977, 2929, 1643, 1358, 1317, 1411, 1004, 970 cm–1.
Larger-Scale Preparation of 14 (5.4 mmol)

Neat Et2Zn (1.23 mL, 12.0 mmol) was added to a flame-dried flask containing a stir bar, CH2Cl2 (25.0 mL), and DME (1.13 mL). The solution was cooled to 0 °C, after which diiodomethane (264 µL, 3.28 mmol) was added dropwise over 5 min while maintaining the temperature at –5 to 0 °C. Once the addition was complete, the mixture was allowed to stir for 10 min, after which a solution of premixed 15b (137 mg, 0.74 mmol) and 11 (221 mg, 0.82 mmol) in CH2Cl2 (2 mL) was added dropwise over 1 min. The resulting mixture was stirred for 6 h at rt. The reaction mixture was diluted with NH4Cl (1 mL) and EtOAc (3 mL). The organic layer was separated and washed with brine (2 mL). The aqueous layer was extracted with EtOAc (2 × 3 mL) and the organic layers were combined, dried with Na2SO4 and concentrated under reduced pressure. The residue was dissolved in diethanolamine (2.85 g, 27.1 mmol) in CH2Cl2 (21 mL) and the mixture was allowed to stir for 3 h. The crude reaction mixture was loaded directly onto a column for chromatography (silica gel, EtOAc/hexanes, 1:3). After purification the pure product was obtained as a yellow oil.

Yield: 31 mg (21%); 90.9:9.1 er; TOF (6224) (Chiralpak OJ-RH, 13% MeCN, 0.4 mL/min): 20.19 min. fR(minor): 17.74 min; RF = 0.3 (EtOAc/hexane, 1:3); [α]D25 +7.4 (c 0.83, MeOH).

IR (neat): 2977, 2932, 1644, 1425, 1371, 1314, 1141, 1042, 854 cm⁻¹.

1H NMR (400 MHz, CDCl3): δ = 3.45 (d, J = 6.8 Hz, 2 H), 1.65 (s, 1 H), 1.20–1.34 (m, 1 H), 0.76–0.73 (dd, J = 7.7, 3.7 Hz, 1 H), 0.56–0.54 (m, 1 H), –0.23 (dt, J = 9.8, 5.8 Hz, 1 H).

13C NMR (101 MHz, CDCl3): δ = 83.2, 68.0, 24.8 (2 C), 20.5 (4 C), 9.3, –1.6.

18B NMR (400 MHz, CDCl3): δ = 33.1.

© 2019. Thieme. All rights reserved. – Synthesis 2019, 51, 3834–3846

This document was downloaded for personal use only. Unauthorized distribution is strictly prohibited.
ca gel, EtOAc/hexanes, 1:3). After purification the pure product was obtained as a yellow oil spectroscopically identical to 14 at the 1.64 mmol scale.

Yield: 452 mg (42%); 89.6:10.3 er; TOF (6224) (Chiralpak OJ-RH, 9% MeCN, 0.4 mL/min): f_{major} = 25.24 min; f_{minor} = 21.86; [α]_D = +7.6 (c 1.0, MeOH).

Products 19a–e by Rapid Assessment of Functional Groups: Intermolecular Screening Protocol for Non-oxidative Workup; General Procedure D

To a solution of Et₂Zn (113 µL, 1.10 mmol) in CH₂Cl₂ (2.5 mL) at 0 °C was added diiodomethane (177 µL, 2.20 mmol). The mixture was stirred at 0 °C for 10 min to give a white precipitate, to which was added a solution of alcohol 17 (67.1 mg, 0.50 mmol), additive 19 (0.50 mmol), and dioxaborolane 11 (149 mg, 1.1 mmol) in CH₂Cl₂ (2.5 mL) via a cannula. The resulting mixture was stirred for 2 h at rt and was quenched by the addition of sat. aq NH₄Cl (5 mL). The mixture was transferred into a separatory funnel and the reaction flask was rinsed with Et₂O (5 mL). The two layers were separated, and the aqueous layer was extracted with Et₂O (3 × 5 mL). The combined organic layers were dried and concentrated to afford a colorless residue. Warm diethanolamine (263 mg, 2.50 mmol), weighed into a vial and dissolved in CH₂Cl₂ (2.5 mL), was transferred to the flask containing the reaction mixture. Additional CH₂Cl₂ (2.5 mL) was used to rinse the diethanolamine and transferred to the flask containing the reaction mixture. The mixture was stirred at rt for 3 h.Silica gel was added to the reaction mixture, which was concentrated, resulting in dry silica gel saturated with the crude reaction mixture. Purification by column chromatography afforded cyclopropane 18 as a colorless oil, which was identical in all aspects to the reported compound, and additives 19a–e.

General Procedure E

To a solution of Et₂Zn (113 µL, 1.10 mmol) in CH₂Cl₂ (2.5 mL) at 0 °C was added diiodomethane (177 µL, 2.20 mmol). The mixture was stirred at 0 °C for 10 min to give a white precipitate, to which was added a solution of alcohol 17 (67.1 mg, 0.50 mmol), additive 19 (0.50 mmol), and dioxaborolane 11 (149 mg, 1.1 mmol) in CH₂Cl₂ (2.5 mL) via a cannula. The resulting mixture was stirred for 2 h at rt and was quenched by the addition of sat. aq NH₄Cl (5 mL). The mixture was transferred into a separatory funnel and the reaction flask was rinsed with Et₂O (5 mL). The two layers were separated, and the aqueous layer was extracted with Et₂O (3 × 5 mL). The combined organic layers were dried and concentrated to afford a colorless residue.

Benzyl 3,3-Dimethylbutanoate (19a)

General Procedure D: Purification by column chromatography (silica gel, EtOAc/hexanes, 1:3) resulted in the recovered additive 19a (95.9 mg, 93%) and the desired cyclopropane 18 (70.4 mg, 95%).

Benzyl Phenethylcarbamate (19b)

General Procedure D: Purification by column chromatography (silica gel, EtOAc/hexanes, 1:3) resulted in the recovered additive 19b (125 mg, 97%) and the desired cyclopropane 18 (67.4 mg, 91%).

4-Bromobenzyl Acetate (19c)

General Procedure D: Purification by column chromatography (silica gel, MeOH/CH₂Cl₂, 1:9) resulted in the recovered additive 19c (83.7 mg, 98%) and the desired cyclopropane 18 (51.9 mg, 94%).

1H-Indole (19e)

General Procedure D: Purification by column chromatography (silica gel, MeOH/CH₂Cl₂, 1:9) resulted in the recovered additive 19e (59.4 mg, 35%) and the desired cyclopropane 18 (68.9 mg, 93%).

N-Methylidiethanolamine Workup for Fmoc-Containing Additive 19d

To a solution of Et₂Zn (113 µL, 1.10 mmol) in CH₂Cl₂ (2.5 mL) at 0 °C was added diiodomethane (179 µL, 2.20 mmol). The mixture was stirred at 0 °C for 10 min to give a white precipitate, to which was added a solution of alcohol 17 (67.1 mg, 0.50 mmol), additive 19 (0.50 mmol), and dioxaborolane 11 (162 mg, 0.6 mmol) in CH₂Cl₂ (2.5 mL) via a cannula. The resulting mixture was stirred for 2 h at rt and was quenched by the addition of sat. aq NH₄Cl (5 mL). The mixture was transferred into a separatory funnel and the reaction flask was rinsed with Et₂O (5 mL). The two layers were separated, and the aqueous layer was extracted with Et₂O (3 × 5 mL). The combined organic layers were dried and concentrated to afford a colorless residue. N-Methylidiethanolamine (298 mg, 2.5 mg) was weighed into a vial, dissolved in CH₂Cl₂ (2.5 mL) and dioxaborolane 11 (162 mg, 0.6 mmol) in CH₂Cl₂ (2.5 mL) via a cannula. The resulting mixture was stirred for 2 h at rt and was quenched by the addition of sat. aq NH₄Cl (5 mL). The mixture was transferred into a separatory funnel and the reaction flask was rinsed with Et₂O (5 mL). The two layers were separated, and the aqueous layer was extracted with Et₂O (3 × 5 mL). The combined organic layers were dried and concentrated to afford a colorless residue.

4-[(1R,2S)-2-(Hydroxymethyl)cyclopropyl]benzyl Acetate (21)

To a solution of Et₂Zn (233 µL, 2.26 mmol) in CH₂Cl₂ (3.7 mL) at 0 °C was added diiodomethane (365 µL, 4.52 mmol). The mixture was stirred at 0 °C for 10 min to give a white precipitate, to which was added a solution of allylic alcohol 20 (212 mg, 1.03 mmol) and dioxaborolane 11 (306 mg, 1.13 mmol) in CH₂Cl₂ (5.5 mL) via a cannula.
The resulting mixture was stirred for 15 h at rt and was quenched by the addition of sat. aq NH₄Cl (15 mL). The mixture was transferred into a separatory funnel and the reaction flask was rinsed with Et₂O (15 mL). The two layers were separated, and the aqueous layer was extracted with Et₂O (3 × 4 mL). The combined organic layers were dried and concentrated to afford a colorless residue. Warm diethanolamine (541 mg, 5.15 mmol), weighed into a vial and dissolved in CH₂Cl₂ (4 mL), was transferred to the flask containing the reaction mixture. Additional CH₂Cl₂ (4 mL) was used to rinse the diethanolamine and transferred to the flask containing the reaction mixture. The mixture was stirred at rt for 3 h. The mixture was stirred at rt for 3 h. Silicon gel was added to the reaction mixture, which was concentrated, resulting in dry silica gel saturated with the crude reaction mixture. Pure silica gel was added to the reaction mixture, which was concentrated, resulting in dry silica gel saturated with the crude reaction mixture. Purification of the saturated silica gel by column chromatography (silica gel, EtOAc/hexanes, 1:4) afforded the multiplet mixture.

To a dried round-bottom flask equipped with a stir bar was added HetArBr (0.14 mmol). HetArBr (0.14 mmol), Pd₂(dba)₃ (6.4 mg, 5 mol%), and Cy₃P (3.9 mg, 10 mol%). The vial was sealed and degassed by sparging with argon for 20 min. The vial was placed in an oil bath and heated at 110 °C while stirring for 20 h. After completion, the reaction mixture was cooled and diluted with EtOAc (4 mL) and brine (2 mL) and the organic layer was separated. The aqueous layer was washed with EtOAc (4 mL) and brine (2 mL) and the organic layer was separated. The aqueous layer was degassed by sparging with argon for 20 min. The mixture was stirred in an oil bath and heated at 110 °C while stirring for 20 h. After completion, the reaction mixture was cooled and diluted with EtOAc (4 mL) and brine (2 mL) and the organic layer was separated. The aqueous layer was washed with EtOAc (2 × 2 mL), dried, and concentrated.

Purification by column chromatography provided the coupled products 23a–e.

[(1S,2S)-2-(Pyridine-3-yl)cyclopropyl]methanol (23a)
General Procedure A: 3-Bromopyridine (47.1 mg, 0.29 mmol) and 13 (41.3 mg, 0.14 mmol) were used. Yield: 19.8 mg (95%); pale yellow oil; \(R_f = 0.3 \) (MeOH/CH₂Cl₂, 1:9); [\(\alpha \rceil _{D} ^{25} = +44.6 \] (c 0.83, MeOH).

General Procedure B: 3-Bromopyridine (47.1 mg, 0.29 mmol) and 14 (27.7 mg, 0.14 mmol) were used. Yield: 18.6 mg (89%); pale yellow oil.

1H NMR (500 MHz, CDCl₃): \(\delta = 8.39 \) (s, J = 5.7 Hz, 2 H), 7.30 (d, J = 7.8 Hz, 1 H), 7.17 (dd, J = 7.8, 4.8 Hz, 1 H), 3.66 (dd, J = 35.5, 11.3, 6.5 Hz, 2 H), 2.03 (br, 1 H), 1.83–1.79 (m, 1 H), 1.48 (dd, J = 13.4, 6.1 Hz, 1 H), 1.03–0.97 (m, 2 H).

13C NMR (126 MHz, CDCl₃): \(\delta = 148.5, 147.2, 138.2, 132.9, 123.4, 66.2, 25.4, 19.0, 13.8.\)

HRMS (ESI): m/z [M + H]+ calcld for C₉H₈NO: 150.0913; found: 150.0910.

[(1S,2S)-2-(Quinolin-3-yl)cyclopropyl]methanol (23b)
General Procedure A: 5-Bromoquinoline, 98% (58.3 mg, 0.28 mmol) and 13 (41.3 mg, 0.14 mmol) were used. Yield: 26.2 mg (94%); pale yellow oil.

General Procedure B: 5-Bromoquinoline, 98% (58.3 mg, 0.28 mmol) and 14 (27.7 mg, 0.14 mmol) were used. Yield: 24.5 mg (88%); pale yellow oil; \(R_f = 0.3 \) (MeOH/CH₂Cl₂, 1:9); [\(\alpha \rceil _{D} ^{25} = +36.3 \] (c 0.87, MeOH).

IR (neat): 3350, 2923, 2850, 1608, 1447, 1376, 1024, 848 cm⁻¹.

[(1S,2S)-2-(4-Methylpyridin-2-yl)cyclopropyl]methanol (23c)
General Procedure A: 2-Bromo-4-methylpyridine, 98% (48.2 mg, 0.28 mmol) and 13 (41.3 mg, 0.14 mmol) were used. Yield: 16.5 mg (72%); clear oil; \(R_f = 0.56 \) (MeOH/CH₂Cl₂, 1:9); [\(\alpha \rceil _{D} ^{25} = +44.0 \] (c 0.56, MeOH).

IR (neat): 3352, 3269, 3002, 2922, 2854, 1706, 1495, 1332, 1028 cm⁻¹.

1H NMR (500 MHz, CDCl₃): \(\delta = 8.29 \) (s, J = 5.7 Hz, 2 H), 7.30 (d, J = 7.8 Hz, 1 H), 7.17 (dd, J = 7.8, 4.8 Hz, 1 H), 3.66 (dd, J = 35.5, 11.3, 6.5 Hz, 2 H), 2.03 (br, 1 H), 1.83–1.79 (m, 1 H), 1.48 (dd, J = 13.4, 6.1 Hz, 1 H), 1.03–0.97 (m, 2 H).

13C NMR (126 MHz, CDCl₃): \(\delta = 148.5, 147.2, 138.2, 132.9, 123.4, 66.2, 25.4, 19.0, 13.8.\)

[(1S,2S)-2-(Pyridine-2-yl)cyclopropyl]methanol (23d)
General Procedure A: 2-Bromo-4-methylpyridine, 98% (48.2 mg, 0.28 mmol) and 13 (41.3 mg, 0.14 mmol) were used. Yield: 21.3 mg (93%); clear oil.

General Procedure B: 2-Bromo-4-methylpyridine, 98% (48.2 mg, 0.28 mmol) and 14 (27.7 mg, 0.14 mmol) were used. Yield: 16.5 mg (72%); clear oil; \(R_f = 0.4 \) (MeOH/CH₂Cl₂, 1:9); [\(\alpha \rceil _{D} ^{25} = +44.0 \] (c 0.56, MeOH).

IR (neat): 3350, 2923, 2850, 1608, 1447, 1376, 1024, 848 cm⁻¹.

1H NMR (500 MHz, CDCl₃): \(\delta = 8.29 \) (d, J = 5.7 Hz, 1 H), 6.95 (d, J = 11.8 Hz, 1 H), 6.86 (d, J = 11.3, 6.4 Hz, 1 H), 3.58 (dd, J = 11.3, 7.1 Hz, 1 H), 2.30 (s, 3 H), 1.95–1.91 (m, 1 H), 1.74 (dd, J = 10.6, 5.3, 3.2 Hz, 1 H), 1.64 (s, 1 H), 1.27–1.24 (m, 1 H), 0.94 (dd, J = 8.6, 5.7, 4.4 Hz, 1 H).

13C NMR (126 MHz, CDCl₃): \(\delta = 161.3, 149.1, 147.2, 122.4, 121.9, 66.4, 25.7, 23.0, 21.1, 14.0.\)

HRMS (ESI): m/z [M + H]+ calcld for C₁₃H₁₃NO: 164.1069; found: 164.1069.
[(15S,2S)-2-(6-Aminopyridin-2-yl)cyclopropyl]methanol (23d)

General Procedure A: 2-Amino-6-bromopyridine, 98% (48.4 mg, 0.28 mmol) and 13 (41.3 mg, 0.14 mmol) were used.

Yield: 21.1 mg (92%); yellow oil.

General Procedure B: 2-Amino-6-bromopyridine, 98% (27.7 mg, 0.14 mmol) and 14 (41.3 mg, 0.14 mmol) were used.

Yield: 18.6 mg (81%); yellow oil; \(R = 0.3 \) (MeOH/CH\(_2\)Cl\(_2\), 1:9); \(\delta \text{H}_{150} \text{MHz} = 3.75 \) (c 0.85, MeOH).

IR (neat): 3335, 3003, 2925, 2853, 1721, 1559, 1416, 1076, 1025 cm\(^{-1}\).

\[(15S,2S)-2-(Pyrimidin-5-yl)cyclopropyl\]methanol (23c)

General Procedure A: 5-Bromopyrimidine, 97% (44.5 mg, 0.28 mmol) and 13 (41.3 mg, 0.14 mmol) were used.

Yield: 19.8 mg (94%); yellow oil.

General Procedure B: 5-Bromopyrimidine, 97% (44.5 mg, 0.28 mmol) and 14 (27.7 mg, 0.14 mmol) were used.

Yield: 18.7 mg (89%); pale yellow oil; \(R = 0.3 \) (MeOH/CH\(_2\)Cl\(_2\), 1:9); \(\delta \text{H}_{150} \text{MHz} = 3.89 \) (c 0.87, MeOH).

IR (neat): 3335, 3003, 2925, 2853, 1721, 1559, 1416, 1076, 1025 cm\(^{-1}\).

cis-Cyclopropylmethanol Derivatives 25a–f; General Procedure C

A solution of 24 (66.5 µL, 1.1 mmol) in CH\(_2\)Cl\(_2\) (4.6 mL) was added to Et\(_2\)Zn (115 µL, 1.1 mmol) in a 50 mL round-bottom flask at 0 °C. Gas evolution was observed. After 5 min, a solution of dioxyborane 11 (371 mg, 1.37 mmol) in CH\(_2\)Cl\(_2\) (7 mL) was added. The reaction mixture was stirred for 10 min at 0 °C.

In a 50 mL round-bottom flask at –40 °C, neat Et\(_2\)Zn (507 µL, 4.92 mmol) was added dropwise to a mixture of I (122 g, 4.81 mmol), Et\(_2\)O (0.98 mL, 9.33 mmol), and CH\(_2\)Cl\(_2\) (4.7 mL). Once the I was completely consumed, the reaction mixture was cooled to –78 °C and a solution of CH\(_3\)I (951 mg, 2.42 mmol) in CH\(_2\)Cl\(_2\) (14 mL) was slowly added to the IZnEt solution. The mixture was stirred at –78 °C for 10 min.

The alkoxide solution was quickly cannulated over the carbenoid solution and the reaction mixture was allowed to reach –40 °C (cyclo-raft bath). The reaction mixture was stirred 24 h at this temperature. The reaction mixture was quenched with sat. aq NH\(_4\)Cl. The aqueous layer was extracted with Et\(_2\)O (3 × 10 mL). The organic layers were gathered and dried over MgSO\(_4\) and the solvents were removed until 500 µL under reduced pressure. The intermediate is unstable and highly volatile and care must be taken to avoid loss of the volatile boronate.

The residue was taken up in degassed THF (4.4 mL) and added to a sealed tube containing Pd[PPh\(_3\)]\(_4\) (68.7 mg, 5 mol%) in THF (2.2 mL). Then 3 N aq deoxygenated KOH (2.2 mL) was added followed by the desired coupling partner 22a–e (2.2 mmol). The reaction mixture was heated at 65 °C overnight (16 h). After the mixture had cooled down, H\(_2\)O was added to it. The aqueous layer was extracted with Et\(_2\)O (3 × 7 mL). The combined organic layers were dried over MgSO\(_4\). The solvents were removed under reduced pressure. The residue was stirred in diethanolamine (602 mg, 5.72 mmol) in CH\(_2\)Cl\(_2\) (3 mL) for 1 h to remove any dioxaborolane bound to the cyclopropane. The residue was taken up in CH\(_2\)Cl\(_2\) and purified by flash chromatography (silica gel, MeOH/CH\(_2\)Cl\(_2\), 5:95, unless stated otherwise) to provide the desired coupled products 25a–f.

[(1R,2S)-2-(Pyridin-3-yl)cyclopropyl]methanol (25a)
The product was prepared according to general procedure C using 3-bromopyrididine (217 µL, 2.28 mmol).

Yield: 92 mg (72%); light yellow oil; \(R = 0.23 \) (MeOH/CH\(_2\)Cl\(_2\), 1:9); \(\delta \text{H}_{150} \text{MHz} = 45.2 \) (c 1.0, MeOH).

IR (neat): 3264, 3005, 2866, 1573, 1573, 1480, 1418, 1167, 1025 cm\(^{-1}\).

[(1R,2S)-2-(Quinolin-3-yl)cyclopropyl]methanol (25b)
The product was prepared according to general procedure C using 3-bromoquinoxaline (308 µL, 2.28 mmol).

Yield: 162 mg (71%); light yellow oil; \(R = 0.26 \) (MeOH/CH\(_2\)Cl\(_2\), 1:9); \(\delta \text{H}_{150} \text{MHz} = 43.8 \) (c 1.0, MeOH).

IR (neat): 3262, 3064, 3005, 2872, 1571, 1493, 1464, 1417 cm\(^{-1}\).

[(1R,2S)-2-(4-Methylpyridin-2-yl)cyclopropyl]methanol (25c)
The product was prepared according to general procedure C using 2-bromo-4-methylpyridine (252 µL, 2.28 mmol).

Yield: 136 mg (87%); light yellow oil; \(R = 0.32 \) (MeOH/CH\(_2\)Cl\(_2\), 1:9); \(\delta \text{H}_{150} \text{MHz} = 31.1 \) (c 1.0, MeOH).

IR (neat): 3350, 3053, 3003, 2849, 1606, 1543, 1480, 1032 cm\(^{-1}\).

Synthesis of Starting Materials

2.2′-(Cyclohexylazenediyl)diacetic Acid (CIDA)

To a stirred solution of chloroacetic acid (6.94 mL, 116 mmol) and H$_2$O (9 mL) was added dropwise aq NaOH (9.28 g, 232 mmol in 30 mL of H$_2$O) maintaining the temperature below 30 °C by using an ice bath. The mixture was stirred for 5 min after the addition, and the ice bath was removed. Cyclohexylamine was added dropwise, keeping the temperature below 50 °C. After addition was complete, the reaction mixture was heated at 80 °C for 3 h. A solution of barium chloride dihydrate (12.9 g, 52.9 mmol), dissolved in hot H$_2$O (24 mL), was added in one portion and the mixture was heated for 30 min. A heavy precipitate of the barium salt of the amino acid separated at once. The stirring was continued, keeping the heating bath at 100 °C, and then the mixture was cooled down and kept in an ice bath. The precipitate was then filtered off. The dry barium salt was placed in a flask into which boiling H$_2$O (24 mL) was added and heated to boiling; 5 M sulfuric acid (9 mL) was added gradually over 30 min. Once the addition was complete, the mixture was stirred for 10 min and then concentrated under reduced pressure to 5 mL. The solution was filtered on Celite and concentrated.

Yield: 7.38 g (68%); yellow crystalline solid; mp 198–199 °C.

IR (neat): 3302, 2979, 2941, 2856, 1716 1584, 1400, 1240 cm$^{-1}$.

HRMS (ESI): m/z [M + H]$^+$ calcd for C$_{10}$H$_{13}$NO: 164.1069; found: 164.1071.

[(1R,2S)-2-(6-Aminopyridin-2-yl)cyclopropyl]methanol (25d)

The product was prepared according to general procedure C using 2-amino-6-bromopyridine (392 mg, 2.28 mmol).

Yield: 141 mg (75%); bright yellow oil; $R_f = 0.22$ (MeOH/CH$_2$Cl$_2$, 1:9); [a]$_D^{25}$ = -57.7 (c 1.0, MeOH).

IR (neat): 3332, 3202, 3002, 2860, 1616, 1594, 1324, 1020 cm$^{-1}$.

13C NMR (126 MHz, CDCl$_3$): δ = 151.0860.

1H NMR (500 MHz, CDCl$_3$): δ = 7.35 (dd, $J = 8.1, 7.5$ Hz, 1 H), 6.67 (d, $J = 7.4$ Hz, 1 H), 6.31 (d, $J = 8.2$ Hz, 1 H), 4.41 (s, 2 H), 3.93 (dd, $J = 12.0, 3.8$ Hz, 1 H), 3.33 (dd, $J = 12.0, 8.8$ Hz, 1 H), 2.10 (td, $J = 8.6, 6.0$ Hz, 1 H), 1.59–1.51 (m, 1 H), 1.08 (td, $J = 8.7, 4.8$ Hz, 1 H), 0.98–0.95 (m, 1 H).

HRMS (ESI): m/z [M + H]$^+$ calcd for C$_9$H$_{12}$N$_2$O: 165.1022; found: 165.1022.

[(1R,2S)-2-(Pyrimidin-5-yl)cyclopropyl]methanol (25e)

The product was prepared according to general procedure C using 5-bromopyrimidine (360 mg, 2.28 mmol).

Yield: 127 mg (74%); light yellow oil; $R_f = 0.27$ (MeOH/CH$_2$Cl$_2$, 1:9); [a]$_D^{25}$ = -11.2 (c 1.0, MeOH).

IR (neat): 3329, 3009, 2872, 1556, 1415, 1239, 1168, 1026 cm$^{-1}$.

1H NMR (500 MHz, CDCl$_3$): δ = 9.03 (s, 1 H), 8.65 (s, 2 H), 3.57 (dd, $J = 11.4, 6.0$ Hz, 1 H), 3.17 (dd, $J = 11.4, 8.6$ Hz, 1 H), 2.17 (dd, $J = 14.6, 8.3$ Hz, 1 H), 1.78 (s, 1 H), 1.59 (qt, $J = 8.6, 5.9$ Hz, 1 H), 1.18 (td, $J = 8.4, 5.5$ Hz, 1 H), 0.87 (q, $J = 5.8$ Hz, 1 H).

13C NMR (126 MHz, CDCl$_3$): δ = 157.6 (2 C), 156.6, 132.3, 62.0, 20.5, 16.0, 7.4.

HRMS (ESI): m/z [M + H]$^+$ calcd for C$_{8}$H$_{13}$N$_2$O$_2$: 151.0866; found: 151.0860.

[(1R,2S)-2-Phenylcyclopropyl]methanol (25f)

The product was prepared according to general procedure C using benzobromene (238 µL, 2.28 mmol).

Yield: 120 mg (71%); 95:2.4:7.4 er; SFC (Chiralpak AD-H 25 cm, 30 °C, 150 bar, 10% MeOH, 3 mL/min): $t_{R\text{major}}$: 6.76 min, $t_{R\text{minor}}$: 4.25 min; light yellow oil; $R_f = 0.45$ (EToAc/hexanes, 1:4); [a]$_D^{25}$ = -22.4 (c 1.0, MeOH).

IR (neat): 3330, 2962, 2865, 1638, 1603, 1496, 1451, 1019 cm$^{-1}$.

1H NMR (500 MHz, CDCl$_3$): δ = 7.32–7.23 (m, 4 H), 7.23–7.17 (m, 1 H), 3.48 (dd, $J = 11.7, 6.3$ Hz, 1 H), 3.27 (dd, $J = 11.7, 8.5$ Hz, 1 H), 2.30 (td, $J = 8.5, 6.2$ Hz, 1 H), 1.54–1.47 (m, 1 H), 1.13 (s, 1 H), 1.05 (td, $J = 8.4, 5.3$ Hz, 1 H), 0.89 (dd, $J = 11.4, 5.6$ Hz, 1 H).

13C NMR (126 MHz, CDCl$_3$): δ = 138.4, 129.0 (2 C), 128.5 (2 C), 126.4, 63.1, 21.1, 20.9, 7.8.

HRMS (ESI): m/z [M + NH$_4$]$^+$ calcd for C$_{8}$H$_{13}$NO: 1661226; found: 166.1219.

© 2019. Thieme. All rights reserved. — Synthesis 2019, 51, 3834–3846

This document was downloaded for personal use only. Unauthorized distribution is strictly prohibited.
To a dry sealed tube was added [Pd(PPh₃)₂Cl₂] (304 mg, 0.433 mmol) and copper iodide (82.3 mg, 0.433 mmol). Et₃N (10.5 mL) was added to the sealed tube and the mixture was flushed with argon while stirring. The NMR spectra matched those in the literature.³¹ For reaction 20b, this procedure resulted in the desired product 20c. Yield: 210 mg (99%); yellow oil; Rf = 0.4 (EtOAc/hexanes, 1:1). IR (neat): 3369, 2923, 2857, 1736, 1720, 1231, 1045, 1033, 1017 cm⁻¹. HRMS (ESI): m/z [M + NH₄]⁺ calcd for C₁₁H₁₄O₃Si: 224.1; found: 224.1.

Base-Sensitive Allylic Alcohol (Z)-4-(3-Hydroxyprop-1-en-1-yl)benzyl Acetate (20c)

Acetate 20c (330 mg, 1.03 mmol) was loaded into a dried flask containing THF (4.20 mL). The mixture was cooled to 0 °C and TBAF (1.13 mL, 1.13 mmol) was added dropwise. The reaction was stirred for 30 min at rt until completion. Upon completion, the reaction mixture was quenched with NH₄Cl (5.3 mL). The reaction mixture was stirred at rt for 30 min. The mixture was then filtered and the filtrate was washed with Et₂O (3 × 10 mL). The filtrate was dried with Na₂SO₄ and concentrated under reduced pressure to provide the desired pure product 20b.

Base-Sensitive Additives

Benzyl 3,3-Dimethylbutanoate (19a)

To a suspension of NaH (88.8 mg, 3.70 mmol) in THF (13 mL) at 0 °C was added a solution of benzyl alcohol (385 µL, 3.70 mmol) in THF (5.3 mL). The reaction mixture was stirred at rt for 30 min. The mixture was then cooled to 0 °C and tert-butylacetyl chloride (488 µL, 3.51 mmol) was added dropwise. The reaction mixture was quenched with sat. aq NH₄Cl (13 mL) and H₂O (7 mL) and diluted with EtOAc (13 mL). The layers were separated and the aqueous layer was washed with EtOAc (3 × 13 mL). The organic layers were combined, dried with Na₂SO₄, and concentrated. Purification by flash chromatography (silica gel, hexanes/CH₂Cl₂, 8:2 to 6:4) afforded the desired product 19a. The NMR spectra matched those in the literature.³¹ Yield: 650 mg (85%).
Benzyl Phenethylcarbamate (19b)

To a reaction flask containing anhyd THF (16.5 mL) was added 2-phenethylamine (400 mg, 3.30 mmol) and 4-dimethylaminopyridine (202 mg, 5 mol%). Benzyl chloroformate was added dropwise to the solution and the reaction mixture was allowed to stir for 6 h. The mixture was quenched with H₂O (10 mL) and diluted with Et₂O (13 mL). The aqueous layer was washed with Et₂O (3 × 20 mL). The organic layers were combined, dried with Na₂SO₄, and concentrated under reduced pressure and the white solid was washed with hexanes to result in the desired product 19b. The spectra matched those reported in the literature. Yield: 758 mg (90%).

4-Bromobenzyl Acetate (19c)

Additive 19c was synthesized according to the literature. In a dried flask, 4-bromobenzyl alcohol (600 mg, 3.21 mmol) was dissolved in anhyd pyridine (9 mL). The mixture was allowed to stir for 10 min and cooled down to 0 °C. Upon completion of the reaction, the mixture was diluted with Et₂O (2 × 20 mL), and NaHCO₃ (2 × 20 mL). The aqueous layer was extracted with Et₂O (2 × 20 mL), dried with Na₂SO₄, and concentrated under reduced pressure. Purification by column chromatography (silica gel, EtOAc/hexanes, 1:20) afforded product 19c. The spectra matched those reported in the literature. Yield: 640 mg (87%); yellow oil.

Funding Information

This work was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) (Discovery Grant DG-06438), the Canada Research Chairs program (227346), the Canada Foundation for Innovation (Leaders Opportunity Funds 227346), the Fonds de Recherche du Québec - Nature et Technologies (FRQNT Centre in Green Chemistry and Catalysis; RS-171310), and the Université de Montréal.

Supporting Information

Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1611896.

References

