Synlett 2019; 30(14): 1708-1712
DOI: 10.1055/s-0037-1611873
letter
© Georg Thieme Verlag Stuttgart · New York

Tetrabutylammonium Iodide-Promoted Acyloxylation–Peroxidation of Alkenes with Carboxylic Acid and tert-Butyl Hydroperoxide

Rongxiang Chen
a   College of Chemistry and Chemical Engineering, Xinxiang University, Xinxiang, Henan 453000, P. R. of China   Email: wangkaikaii@163.com
,
Wei Chen
a   College of Chemistry and Chemical Engineering, Xinxiang University, Xinxiang, Henan 453000, P. R. of China   Email: wangkaikaii@163.com
,
Yuntao Shen
a   College of Chemistry and Chemical Engineering, Xinxiang University, Xinxiang, Henan 453000, P. R. of China   Email: wangkaikaii@163.com
,
Zhan-Yong Wang
a   College of Chemistry and Chemical Engineering, Xinxiang University, Xinxiang, Henan 453000, P. R. of China   Email: wangkaikaii@163.com
,
Wei Dai
a   College of Chemistry and Chemical Engineering, Xinxiang University, Xinxiang, Henan 453000, P. R. of China   Email: wangkaikaii@163.com
,
Kai-Kai Wang
a   College of Chemistry and Chemical Engineering, Xinxiang University, Xinxiang, Henan 453000, P. R. of China   Email: wangkaikaii@163.com
,
Lantao Liu
b   College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan 476000, P. R. of China   Email: liult05@iccas.ac.cn
› Author Affiliations
We thank the National Natural Science Foundation of China (21801214, 21572126) for financial support.
Further Information

Publication History

Received: 20 May 2019

Accepted after revision: 05 June 2019

Publication Date:
18 July 2019 (online)


Abstract

An efficient synthesis of tert-butyl peroxides through TBAI-promoted acyloxylation–peroxidation of alkenes by using a carboxylic acid and tert-butyl hydroperoxide was developed. The synthetic utility of our method is enhanced by simple manipulations, easily available starting materials, and a wide substrate scope.

Supporting Information

 
  • References and Notes

    • 1a Organic Peroxides . Ando W. Wiley; Chichester: 1992
    • 1b Shi E, Liu J, Liu C, Shao Y, Wang H, Lv Y, Ji M, Bao X, Wan X. J. Org. Chem. 2016; 81: 5878
    • 1c Schweitzer-Chaput B, Sud A, Pintér Á, Dehn S, Schulze P, Klussmann M. Angew. Chem. Int. Ed. 2013; 52: 13228
    • 1d Willand-Charnley R, Puffer BW, Dussault PH. J. Am. Chem. Soc. 2014; 136: 5821
    • 1e Cheng J.-K, Loh T.-P. J. Am. Chem. Soc. 2015; 137: 42
    • 1f Chaturvedi D, Goswami A, Pratim Saikia P, Barua NC, Rao PG. Chem. Soc. Rev. 2010; 39: 435
    • 2a Zhou W.-S, Xu X.-X. Acc. Chem. Res. 1994; 27: 211
    • 2b Wu Y. Acc. Chem. Res. 2002; 35: 255
    • 2c Graham IA, Besser K, Blumer S, Branigan CA, Czechowski T, Elias L, Guterman I, Harvey D, Isaac PG, Khan AM, Larson TR, Li Y, Pawson T, Penfield T, Rae AM, Rathbone DA, Reid S, Ross J, Smallwood MF, Segura V, Townsend T, Vyas D, Winzer T, Bowles D. Science 2010; 327: 328

      For related reviews, see:
    • 3a Xu K, Hu Y, Zhang S, Zha Z, Wang Z. Chem. Eur. J. 2012; 18: 9793
    • 3b Samanta R, Matcha K, Antonchick AP. Eur. J. Org. Chem. 2013; 5769
    • 3c Wu X.-F, Gong J.-L, Qi X. Org. Biomol. Chem. 2014; 12: 5807
    • 3d Liu D, Lei AW. Chem. Asian J. 2015; 10: 806
    • 3e Rossi R, Lessi M, Manzini C, Marianetti G, Bellina F. Adv. Synth. Catal. 2015; 357: 3777
    • 3f Yuan S, Wang Y, Qiu G, Liu J. Youji Huaxue 2017; 37: 566
    • 3g Qin Y, Zhu LH, Luo SZ. Chem. Rev. 2017; 117: 9433
    • 3h Huang Y, Bao W, Zhu W, Wei W. Youji Huaxue 2018; 38: 752
    • 3i Luo JF, Wei WT. Adv. Synth. Catal. 2018; 360: 2076
    • 3j Chen R, Chen J, Zhang J, Wan X. Chem. Rec. 2018; 18: 1292
    • 3k Yan Y, Cui C, Li Z. Youji Huaxue 2018; 38: 2501
  • 4 Wei W, Zhang C, Xu Y, Wan X. Chem. Commun. 2011; 47: 10827

    • For related reviews, see:
    • 5a Yin G, Mu X, Liu G. Acc. Chem. Res. 2016; 49: 2413
    • 5b Xu J, Song Q. Youji Huaxue 2016; 36: 1151
    • 5c Wu K, Liang Y, Jiao N. Molecules 2016; 21: 352
    • 5d Lan X.-W, Wang N.-X, Xing Y. Eur. J. Org. Chem. 2017; 5821
    • 5e Zhang J.-S, Liu L, Chen T, Han L.-B. Chem. Asian J. 2018; 13: 2277
    • 5f Koike T, Akita M. Chem 2018; 4: 409

    • For recent papers, see:
    • 5g Barker TJ, Boge DL. J. Am. Chem. Soc. 2012; 134: 13588
    • 5h Martínez C, Muñiz K. Angew. Chem. Int. Ed. 2012; 51: 7031
    • 5i Zhang C, Li Z, Zhu L, Yu L, Wang Z, Li C. J. Am. Chem. Soc. 2013; 135: 14082
    • 5j Pan X, Boussonnière A, Curran DP. J. Am. Chem. Soc. 2013; 135: 14433
    • 5k Wang F, Qi X, Liang Z, Chen P, Liu G. Angew. Chem. Int. Ed. 2014; 53: 1881
    • 5l Cheng B, Lu P, Zhang H, Cheng X, Lu Z. J. Am. Chem. Soc. 2017; 139: 9439
    • 5m Jang WJ, Song SM, Moon JH, Lee JY, Yun J. J. Am. Chem. Soc. 2017; 139: 13660
    • 5n Peng J, Docherty JH, Dominey AP, Thomas SP. Chem. Commun. 2017; 53: 4726
    • 5o Takaya J, Miyama K, Zhua C, Iwasawa N. Chem. Commun. 2017; 53: 3982
    • 5p Beniazza R, Douarre M, Lastécouèresa D, Vincent J.-M. Chem. Commun. 2017; 53: 3547
    • 5q Li D, Mao T, Huang J, Zhu Q. Chem. Commun. 2017; 53: 3450
    • 5r Magagnano G, Gualandi A, Marchini M, Mengozzi L, Ceroni P, Cozzi PG. Chem. Commun. 2017; 53: 1591
    • 5s Zhang Y, Wong ZR, Wu X, Lauw SJ. L, Huang X, Webster RD, Chi YR. Chem. Commun. 2017; 53: 184
    • 5t Li H, Shan C, Tung C.-H, Xu Z. Chem. Sci. 2017; 8: 2610
    • 6a Liu K, Li Y, Zheng X, Liu W, Li Z. Tetrahedron 2012; 68: 10333
    • 6b Schweitzer-Chaput B, Demaerel J, Engler H, Klussmann M. Angew. Chem. Int. Ed. 2014; 53: 8737
    • 6c Banerjee A, Santra SK, Khatun N, Ali W, Patel BK. Chem. Commun. 2015; 51: 15422
    • 6d Yang W.-C, Weng S.-S, Ramasamy A, Rajeshwaren G, Liao Y.-Y, Chen C.-T. Org. Biomol. Chem. 2015; 13: 2385
    • 6e Jiang J, Liu J, Yang L, Shao Y, Cheng J, Bao X, Wan X. Chem. Commun. 2015; 51: 14728
    • 6f Zhao L, Wang Y, Ma Z, Wang Y. Inorg. Chem. 2017; 56: 8166
    • 6g Lan Y, Yang C, Xu Y.-H, Loh T.-P. Org. Chem. Front. 2017; 4: 1411
    • 6h Zhang H.-Y, Ge C, Zhao J, Zhang Y. Org. Lett. 2017; 19: 5260
    • 6i Lan Y, Chang X.-H, Fan P, Shan C.-C, Liu Z.-B, Loh T.-P, Xu Y.-H. ACS Catal. 2017; 7: 7120
    • 6j Lu S, Qi L, Li Z. Asian J. Org. Chem. 2017; 6: 313
    • 6k Chen Y, Chen Y, Lu S, Li Z. Org. Chem. Front. 2018; 5: 972
    • 6l Xu R, Li Z. Tetrahedron Lett. 2018; 59: 3942
    • 6m Lu S, Tian T, Xu R, Li Z. Tetrahedron Lett. 2018; 59: 2604
    • 6n Chen Y, Tian T, Li Z. Org. Chem. Front. 2019; 6: 632
    • 6o Chen Y, Ma Y, Li L, Jiang H, Li Z. Org. Lett. 2019; 21: 1480
    • 6p Chen Y, Li L, Ma Y, Li Z. J. Org. Chem. 2019; 84: 5328
  • 7 Liu W, Li Y, Liu K, Li Z. J. Am. Chem. Soc. 2011; 133: 10756
  • 8 Gao X, Yang H, Cheng C, Jia Q, Gao F, Chen H, Cai Q, Wang C. Green Chem. 2018; 20: 2225
    • 9a Singh C, Chaudhary S, Puri SK. Bioorg. Med. Chem. Lett. 2008; 18: 1436
    • 9b Dechert A.-MR, MacNamara JP, Breevoort SR, Hildebrandt ER, Hembree NW, Rea AC, McLain DE, Porter SB, Schmidt WK, Dore TM. Bioorg. Med. Chem. 2010; 18: 6230
  • 10 CCDC 1906436 contains the supplementary crystallographic data for compound 3g. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
  • 11 Shi E, Shao Y, Chen S, Hu H, Liu Z, Zhang J, Wan X. Org. Lett. 2012; 14: 3384
    • 12a Chen L, Shi E, Liu Z, Chen S, Wei W, Li H, Xu K, Wan X. Chem. Eur. J. 2011; 17: 4085
    • 12b Liu Z, Zhang J, Chen S, Shi E, Xu Y, Wan X. Angew. Chem. Int. Ed. 2012; 51: 3231
  • 13 1-[(tert-Butylperoxy)methyl]-2-(methoxycarbonyl)ethyl 4-tert-Butylbenzoate (3a); Typical Procedure A test tube was charged with TBAI (36.9 mg, 0.1 mmol) and 4-tert-butylbenzoic acid (35.6 mg, 0.2 mmol). DMSO (1.0 mL), methyl acrylate (2a; 1.6 mmol), and a 70% aq solution of TBHP (180.2 mg, 1.4 mmol) were added from a syringe, and the mixture was stirred at 80 °C for 12 h under air. The reaction was then quenched with sat. aq Na2SO3 to remove residual TBHP. Evaporation of the solvent followed by flash column chromatography (silica gel, PE–EtOAc) gave a colorless liquid; yield: 53.5 mg (76%). 1H NMR (400 MHz, CDCl3): δ = 8.09–8.02 (m, 2 H), 7.51–7.43 (m, 2 H), 5.58 (dd, J = 5.9, 3.5 Hz, 1 H), 4.42 (qd, J = 13.0, 4.7 Hz, 2 H), 3.77 (d, J = 2.5 Hz, 3 H), 1.34 (s, 9 H), 1.24 (s, 9 H). 13C NMR (101 MHz, CDCl3): δ = 168.6, 165.8, 157.1, 129.9, 126.5, 125.4, 80.8, 73.4, 70.7, 52.5, 35.1, 31.1, 26.2. HRMS (ESI-TOF): m/z [M + Na]+ calcd for C19H28NaO6: 375.1778; found: 375.1770.