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Abstract For 45 years, efforts to prepare a fluorinated analogue of the
scintiscanning/SPECT agent 6-(iodomethyl)-19-norcholest-5(10)-en-3-
ol (NP-59) for development of a PET imaging agent have failed due to
undesired elimination reactions and unexpected rearrangements
observed while utilizing a wide variety of fluorinating conditions (e.g.,
cesium fluoride, silver fluoride, (2-chloro-1,1,2-trifluoroethyl)diethyl-
amine (FAR), diethylaminosulfur trifluoride (DAST), and hexafluoro-
propene diethylamine FPA). Herein, we report the full synthesis of NP-
59, followed by the four-step synthesis of 6-(fluoromethyl)-19-norcho-
lest-5(10)-en-3-ol (FNP-59) using a recently developed mild fluorinating
reagent, less prone to producing elimination reactions in the prepara-
tion of primary fluorides, TBAF(pinacol)2, with an overall yield of 16%
(four steps). Also included is an evaluation of the TBAF(pinacol)2 reagent
on eight test substrates to investigate its scope.
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The scintiscanning agent 6-(iodomethyl)-19-norcho-
lest-5(10)-en-3-ol (NP-59) was first reported in 1975 as
part of an effort to develop a cholesterol analogue for imag-
ing diseases associated with the adrenal glands such as
Cushing’s syndrome, aldosteronism, and identification of
adrenal remnants following adrenalectomy procedures.1
NP-59 was identified as an impurity in the preparation of
19-iodocholesterol.2 It was discovered that 19-iodocholes-
terol, upon heating as part of the isotopic exchange reaction
to incorporate iodine-131, would rearrange to give NP-59.
Adrenal uptake of NP-59 was greater with a better tissue to
background ratio compared to 19-iodocholesterol, and NP-
59 showed improved stability to deiodination.

Interest in utilizing NP-59 for cortical adrenal imaging
has continued with efforts made to improve the agent by
using alternate iodine isotopes to prepare NP-59 for use in

single-photon emission computed tomography (SPECT) im-
aging (123I, 125I)3 or in positron emission tomography (PET)
imaging (124I).4 [131I]NP-59 is limited to scintigraphy and
SPECT methods that have lower spatial resolution than PET,
which limits the diagnostic utility of the agent. The PET im-
aging agent has the benefit of coincidence detection for bet-
ter resolution but is limited by the low positron output of
iodine-124 (124I decays by + 26% vs. 18F, 97%) leading to
noise that lowers image quality, and requires undesirably
high radiation dosimetry to the patient. A fluorine-18 ana-
logue will improve the imaging characteristics, by provid-
ing a PET imaging cholesterol analogue with better spatial
resolution.

Additionally, NP-59 has a relatively long biological half-
life, necessitating multiday imaging protocols, where injec-
tion occurs on one day with the patient returning on a later
day for scanning, which is not ideal for the patient and lim-
its the extent of quantitation that can be performed with
the imaging data. It is common for fluorine analogues to
have improved metabolic stability and other pharmacoki-
netic parameters. For instance, the biological half-life of
metaiodobenzylguanidine is estimated at 34 hours, where-
as its fluorine analogue metafluorobenzylguanidine has a
2-hour biological half-life.5

Reflecting these advantages as well as a wider interest
in the use of radiofluorinated steroids for imaging purpos-
es,6 there have been efforts for decades to prepare a fluori-
nated analogue of NP-59, as well as the corresponding 18F-
isotopologue. However, common fluorinating reagents have
overwhelmingly led to elimination (e.g., cesium fluoride,
(2-chloro-1,1,2-trifluoroethyl)diethylamine (FAR), diethyl-
aminosulfur trifluoride (DAST), and hexafluoropropene di-
ethylamine (FPA)), ring expansion, rearrangement, and oth-
er undesired products.7 While other steroids prone to un-
wanted side reactions have been successfully fluorinated
with 1-butyl-3-methylimidazolium tetrafluoroborate, such
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as 7-(fluoromethyl)dihydrotestosterone, these methods
gave low-single-digit yields of the fluorinated products.8
Recently, the coordination of fluoride species with various
alcohols, and the effects of hydrogen bonding on their reac-
tivity have given rise to milder fluorinating reagents, which
are less apt to produce unwanted byproducts. One of these
alcohol coordinated reagents, tetra-N-butylammonium flu-
oride bis-pinacol (TBAF(pinacol)2), proved particularly
promising at producing primary fluorides while minimiz-
ing byproduct formation.9 However, this reagent was evalu-
ated on only one test substrate, so it was necessary to vet it
on a series of model compounds prior to its application as
the penultimate step of a multistep steroid synthesis.

To determine the potential utility of TBAF(pinacol)2, in-
cluding for the fluorination of NP-59, a representative
group of primary, secondary, and tertiary tosylates and al-
kyl bromides were prepared. Each was then stirred with
TBAF(pinacol)2 at 70 °C in acetonitrile for 2 hours, and an
extract was removed. To these extracts, an equimolar
amount of 4-fluorobenzonitrile was added as an internal
standard, and the conversion into the fluorinated product
was determined by 19F NMR spectroscopy. The process was
then repeated with a second reaction, and extracts were
taken after 18 hours to determine the time dependency of
the reactions (Table 1).

Comparing the substrates by their degree of substitu-
tion shows that TBAF(pinacol)2 performs best in the synthe-
sis of primary fluorides (Table 1, entries 1–3), although sec-
ondary (entries 4–6) and tertiary (entries 7 and 8) fluorides
were also accessible, albeit with lower conversions into flu-
oride product. Alkyl bromides showed higher conversions
into product after 18 hours compared with 2 hours, where-
as there were no significant differences between 2- and 18-
hour conversions when using tosylates. This substrate
scope study suggests tosylates are better leaving groups for
use with TBAF(pinacol)2.

To prepare NP-59, we started from cholesterol (Scheme
1). The synthesis of 1–4 was conducted according to report-
ed procedures, with some optimization for scale and time.10

Cholesterol was protected at the 3-position by treating it
with acetic anhydride in the presence of pyridine to give 1,
the acetylated intermediate. Compound 1 was then stirred
with N-bromoacetamide under acidic conditions under foil
to block light to give bromohydrin 2. Compound 2 was heat-
ed with lead tetraacetate and iodine to give 3, the cyclized
intermediate, which was then treated with zinc powder in
acetic acid to give alcohol 4. Intermediate 4 was then treat-
ed with p-toluenesulfonsyl chloride in the presence of di-
methylaminopyridine to give tosylate 5. While there are
various methods for accessing NP-59 from protected to-
sylate intermediate 5, we expected that deprotection and a
subsequent one-step iodination/rearrangement would be

the most straightforward and reliable.2,11 Thus, compound 5
was deprotected at the 3-position by stirring it in a solution
of K2CO3 to yield 6, which was immediately heated with KI
to promote the iodination/rearrangement reported by
Maeda and colleagues.2b Analysis showed that, after 7 h, the
product was approximately a 1:1 mixture of the unrear-
ranged 19-iodocholesterol and NP-59. As such, the mixture
was resuspended in MeCN and heated for an additional 2 h
to give only NP-59.

Table 1  TBAF(pinacol)2 Substrates and 19F NMR Yieldsa

Entry Substrate Conversion (%)b

2 h 18 h

1 63 57

2 68 64

3 61 72

4 21 9

5 2 10

6 7 7

7 5 4

8 19 44

a Starting material (0.2 mmol) was dissolved in acetonitrile (0.8 mL), 
TBAF(Pinacol)2 (0.4 mmol) was then added. The reaction was heated at 
70 °C for 2 or 18 hours.
b Non-isolated conversion determined by 19F NMR spectroscopic analysis.
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Scheme 1  Synthesis of NP-59 from cholesterol

Lastly, we investigated the conversion of NP-59 into
FNP-59 (Scheme 2). To produce the intermediate for fluori-
nation, NP-59 was initially protected as the acetate at the 3-
position by treating it with acetic anhydride in the presence
of 4-(dimethylamino)pyridine to form 7. We initially ex-
plored whether treating 7 directly with TBAF(pinacol)2
could produce the desired product, but this resulted in a
complex mixture. Therefore, 7 was instead heated with Ag-
OTs to yield 8. In the penultimate step 8 was heated with
TBAF(pinacol)2 in acetonitrile to give 9, the protected fluo-
ride, in 67% yield. Treatment of 9 with K2CO3 in a mixture of
MeOH/CH2Cl2 (1:1) yielded FNP-59.

In summary, an updated synthesis of NP-59, along with
spectroscopic characterization of all intermediates has
been conducted. NP-59 was then converted into FNP-59 via
a four-step synthesis in an overall yield of 16% using
TBAF(pinacol)2 in the key fluorination step. With FNP-59 in
hand, toxicity studies are under way, and a method for the
radiosynthesis of [18F]FNP-59 is being developed.
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Scheme 2  Synthesis of FNP-59 from NP-59
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