A Concise, Catalyst-Free Synthesis of Davis’ Oxaziridines using Sodium Hypochlorite

Saori Kitagawa*
Hiromitsu Mori*
Tatsuya Odagiri*
Katsuya Suzuki*
You Kikkawa*
Rie Osugi*
Shinobu Takizawa
Yoshikazu Kimura*
Masayuki Kirihara* a

* Department of Materials and Life Science, Shizuoka Institute of Science and Technology, 2200-2 Toyosawa, Fukuroi, Shizuoka 437-8555, Japan
kirihara.masayuki@sist.ac.jp
b R&D Department of Chemicals, Nippon Light Metal Company, Ltd., Kambara, Shimizu-ku, Shizuoka 421-3203, Japan
c The Institute of Scientific and Industrial Research (ISIR), Osaka University, Mihogaoka, Ibaraki-shi, Osaka 567-0047, Japan
d Research and Development Department, Iharanikkei Chemical Industry Co. Ltd., Kamba-ra, Shimizu-ku, Shizuoka 421-3203, Japan

Received: 15.12.2018
Accepted after revision: 23.01.2019
Published online: 19.02.2019
DOI: 10.1055/s-0037-1611722; Art ID: so-2018-d0064-op

License terms: CC BY

Abstract N-Sulfonyloxaziridines (Davis’ oxaziridines) can be synthesized by reacting the corresponding N-sulfonylimines with aqueous sodium hypochlorite in acetonitrile without any catalyst. The pH of the aqueous sodium hypochlorite is crucial to obtain the product in high yield. Optimized conditions are presented that allow synthetically useful Davis’ oxaziridines to be easily obtained in up to 90% yields from the corresponding imines by using inexpensive, stable, environmentally friendly sodium hypochlorite pentahydrate crystals as the oxidant, with high reproducibility.

Key words oxaziridine, Davis’ oxaziridine, sodium hypochlorite, sodium hypochlorite pentahydrate, N-sulfonylimine, oxidation

Oxaziridines contain a strained three-membered ring consisting of a carbon, nitrogen, and oxygen atom. They are interesting reagents in organic synthetic chemistry because they can be used both as oxidizing and electrophilic amination reagents.1 Of the oxaziridines, N-sulfonyloxaziridines are the most extensively utilized in organic synthesis because of their stability. In the 1980s, Davis and co-workers developed the chemistry of N-sulfonyloxaziridines extensively, thus such compounds are commonly referred to as ‘Davis’ oxaziridines’.2 They are generally prepared through oxidation of the corresponding imine, and several oxidants (m-chloroperbenzoic acid,2a,3a–d Oxone™,2b hydrogen peroxide or cumene hydroperoxide (CHP))3h with a catalyst3e–g have been used for this purpose (Scheme 1).

Oxaziridines can be synthe

N-Sulfonyloxaziridines (Davis’ oxaziridines) can be synthesized by reacting the corresponding N-sulfonylimines with aqueous sodium hypochlorite in acetonitrile without any catalyst. The pH of the aqueous sodium hypochlorite is crucial to obtain the product in high yield. Optimized conditions are presented that allow synthetically useful Davis’ oxaziridines to be easily obtained in up to 90% yields from the corresponding imines by using inexpensive, stable, environmentally friendly sodium hypochlorite pentahydrate crystals as the oxidant, with high reproducibility.

Key words oxaziridine, Davis’ oxaziridine, sodium hypochlorite, sodium hypochlorite pentahydrate, N-sulfonylimine, oxidation

Oxaziridines contain a strained three-membered ring consisting of a carbon, nitrogen, and oxygen atom. They are interesting reagents in organic synthetic chemistry because they can be used both as oxidizing and electrophilic amination reagents.1 Of the oxaziridines, N-sulfonyloxaziridines are the most extensively utilized in organic synthesis because of their stability. In the 1980s, Davis and co-workers developed the chemistry of N-sulfonyloxaziridines extensively, thus such compounds are commonly referred to as ‘Davis’ oxaziridines’.2 They are generally prepared through oxidation of the corresponding imine, and several oxidants (m-chloroperbenzoic acid,2a,3a–d Oxone™,2b hydrogen peroxide or cumene hydroperoxide (CHP))3h with a catalyst3e–g have been used for this purpose (Scheme 1).

Sodium hypochlorite (NaOCl) is an ideal oxidant in organic synthesis,4 because it produces only non-toxic sodium chloride (NaCl) as a by-product following oxidation, and commercial aqueous NaOCl is non-explosive and inexpensive. Recently, we found that stable, crystalline sodium hypochlorite pentahydrate (NaOCl·5H2O),5 which is now commercially available from several companies, is a very useful oxidant for the nitroxy radical-catalyzed oxidation of alcohols,5b,5c as well as the oxidation of organosulfur compounds5d,5e. However neither of these practical, environmentally friendly oxidants, aq. NaOCl or NaOCl·5H2O, have been used for the preparation of Davis’ oxaziridines. In this paper, we report the concise, catalyst-free preparation of Davis’ oxaziridines via reaction of N-sulfonylimines in aqueous acetonitrile with NaOCl under basic conditions (Scheme 2).

Scheme 1
Scheme 2

In initial optimization studies, N-tosylimine (1a) derived from benzaldehyde (3a) was chosen as a substrate, and treated with conventional 12% aqueous NaOCl in several solvents (Table 1). The desired oxaziridine 2a was produced efficiently in acetonitrile (entry 1). On the other hand, hydrolysis of the imine 1a predominated in other solvents, regenerating 3a (entries 2–4).

Table 1 Solvent Effect for the reaction of 1a with NaOCl

| Entry | Solvent | Time (h) | 1a (SM) (oxaziridine) | 2a | 3a
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CH₃CN</td>
<td>0.5</td>
<td>0</td>
<td>85</td>
<td>15</td>
</tr>
<tr>
<td>2</td>
<td>t-BuOH</td>
<td>5</td>
<td>1</td>
<td>5</td>
<td>94</td>
</tr>
<tr>
<td>3</td>
<td>CH₂Cl₂</td>
<td>24</td>
<td>8</td>
<td>57</td>
<td>35</td>
</tr>
<tr>
<td>4</td>
<td>toluene</td>
<td>24</td>
<td>24</td>
<td>3</td>
<td>97</td>
</tr>
</tbody>
</table>

Table 2 Comparison of Conventional vs. Freshly Prepared 12% aq. NaOCl

<table>
<thead>
<tr>
<th>Entry</th>
<th>12% NaOCl aq.</th>
<th>pH</th>
<th>1H NMR ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>conventional aq. solution</td>
<td>13</td>
<td>85 15</td>
</tr>
<tr>
<td>2</td>
<td>prepared from NaOCl·5H₂O</td>
<td>11</td>
<td>10 90</td>
</tr>
</tbody>
</table>

The main difference between conventional aqueous NaOCl and an aqueous solution prepared from NaOCl·5H₂O crystals is the pH. As shown in Table 2, the pH of the former was 13, and the pH of the latter was 11. In our previous work on the nitroxy radical-catalyzed oxidation of alcohols and the catalyst-free oxidation of sulfides to sulfoxides with NaOCl·5H₂O, we observed that the pH of the aqueous NaOCl solutions dramatically influenced oxidation reactivity. Therefore, the reactivity of the 12% NaOCl aqueous solutions prepared from NaOCl·5H₂O was evaluated while altering the pH with HCl or NaOH (Table 3).

Table 3 Reactivity of aq 12% NaOCl with Varying pH

<table>
<thead>
<tr>
<th>Entry</th>
<th>pH</th>
<th>12% NaOCl aq.</th>
<th>1H NMR ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>14⁺</td>
<td>Prepared from NaOCl·5H₂O</td>
<td>68 32</td>
</tr>
<tr>
<td>2</td>
<td>14⁺</td>
<td>Conventional solution</td>
<td>81 19</td>
</tr>
<tr>
<td>3</td>
<td>13⁺</td>
<td>Prepared from NaOCl·5H₂O</td>
<td>87 13</td>
</tr>
<tr>
<td>4</td>
<td>13⁺</td>
<td>Conventional solution</td>
<td>85 15</td>
</tr>
<tr>
<td>5</td>
<td>12⁺</td>
<td>Prepared from NaOCl·5H₂O</td>
<td>26 74</td>
</tr>
<tr>
<td>6</td>
<td>12⁻</td>
<td>Conventional solution</td>
<td>30 70⁺</td>
</tr>
<tr>
<td>7</td>
<td>10⁻</td>
<td>Prepared from NaOCl·5H₂O</td>
<td>0 100⁻</td>
</tr>
<tr>
<td>8</td>
<td>10⁻</td>
<td>Conventional solution</td>
<td>0 0⁻</td>
</tr>
</tbody>
</table>

As we had proposed, the reactivity of 1a toward NaOCl depended on the pH of the reaction mixture. A pH of 13 optimized the outcome (entries 3 and 4), and 2a was obtained in good isolated yields (71% and 69%) as shown in Scheme 3.
Further screening of the reaction conditions revealed that 6 equivalents of 12% aqueous NaOCl solution, prepared from NaOCl·5H2O with commercial pH 13 buffer (KCl-NaOH) in acetonitrile, afforded 1a in 90% isolated yield (Scheme 4).

Several sulfonylimines 1 were then treated with aqueous NaOCl under the optimized conditions using CH3CN as the solvent, including the optically active substrate 1g (Table 4). In most cases, the corresponding oxadirizine 2 was obtained in moderate to high yield. In the case of 1f, the desired 2f was obtained in only 4% yield accompanied by several unidentified by-products. Since the reaction conditions were basic, the acidic methyl proton of 1f might be removed, and the resulting anion 1f’ converted into several by-products (Scheme 5).

A plausible reaction mechanism for the formation of 2 is depicted in Scheme 6. A hypochlorite anion attacks the imine carbon of 1 to produce intermediate A and then the amide anion attacks the oxygen atom to produce the oxaziridine 2. Strongly basic conditions are required to prevent the hydrolysis of 1 to the corresponding aldehyde.

Oxaziridines 2, prepared from the reaction of 1 with NaOCl, can be used as oxidants. We confirmed that the α-hydroxylation of 2-methyl-1-tetralone using 2a or 2g as the oxidant provided results that tallied with those reported in the literature.2

* Isolated yield.
* H NMR yield using an internal standard (dimethyl sulfone).

Table 4 Reaction of 1 with NaOCl in CH3CN

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>Time (min)</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>2a</td>
<td>30</td>
<td>90*</td>
</tr>
<tr>
<td>1b</td>
<td>2b</td>
<td>30</td>
<td>67*</td>
</tr>
<tr>
<td>1c</td>
<td>2c</td>
<td>20</td>
<td>73*</td>
</tr>
<tr>
<td>1d</td>
<td>2d</td>
<td>28</td>
<td>81*</td>
</tr>
<tr>
<td>1e</td>
<td>2e</td>
<td>24</td>
<td>69*</td>
</tr>
<tr>
<td>1f</td>
<td>2f</td>
<td>18</td>
<td>4*</td>
</tr>
<tr>
<td>1g</td>
<td>2g</td>
<td>30</td>
<td>66*</td>
</tr>
</tbody>
</table>
In conclusion, synthetically useful N-sulfonyloxaziridines (Davis’ oxaziridines) 2 can be synthesized from reaction of the corresponding N-sulfonylimine 1 with aqueous NaOCl to provide a crude product. Although both NaOCl·5H2O and conventional aq. NaOCl can be used as the oxidant, NaOCl·5H2O is recommended because, due to the instability of conventional aq. NaOCl, we observed that the target compounds are not always obtained in high yields.

All reagents were purchased from Nacalai Tesque, Wako Pure Chemicals Industries, Kanto Kagaku, Kishida Reagents Chemical Co., Tokyo Chemical Industry, or Aldrich, and used without further purification. Melting points were measured with a Yanaco micro melting point apparatus (MP-J3) and are uncorrected. NMR spectra were recorded with a Shimadzu GCMS-QP1100EX spectrometer as solutions in CDCl3 using dimethyl sulfone as an internal standard. All of the products obtained in this study are identical to those reported.

7b-Phenyl-7bH-benzo[d][1,2]oxazireno[2,3-b]isothiazol2-3,3-dioxide (2c)
According to the representative procedure, 2c (190 mg, 73%) was obtained from 1c (242 mg, 1.00 mmol).

Colorless crystals; mp 97–99 °C (lit.2i 105–106 °C).
1H NMR (CDCl3): δ = 7.88 (dd, J = 6.8, 1.2 Hz, 1 H), 7.79–7.71 (m, 2 H), 7.63–7.40 (m, 4 H), 7.57–7.49 (m, 4 H).
13C NMR (CDCl3): δ = 137.75, 134.41, 133.98, 133.95, 133.00, 129.51, 129.36, 127.82, 126.42, 124.24, 84.68.

7b-(4-Chlorophenyl)-7bH-benzo[d][1,2]oxazireno[2,3-b]isothiazol2-3,3-dioxide (2d)
According to the representative procedure, 2d (237 mg, 81%) was obtained from 1d (276 mg, 1.00 mmol).

White solid; mp 140–143 °C (lit.2k 144–145 °C).
1H NMR (CDCl3): δ = 7.88 (dd, J = 6.4, 1.6 Hz, 1 H), 7.81–7.73 (m, 2 H), 7.63–7.61 (dd, J = 6.8, 0.8 Hz, 1 H), 7.57–7.49 (m, 4 H).
13C NMR (CDCl3): δ = 135.30, 134.41, 133.98, 133.95, 133.00, 129.51, 129.36, 127.82, 126.42, 124.24, 84.68.

7b-(3-Chlorophenyl)-7bH-benzo[d][1,2]oxazireno[2,3-b]isothiazol2-3,3-dioxide (2e)
According to the representative procedure, 2d (237 mg, 81%) was obtained from 1d (276 mg, 1.00 mmol).

Pale-orange solid; mp 124–126 °C (lit.2c 125–126 °C).
1H NMR (CDCl3): δ = 7.90–7.87 (m, 1 H), 7.82–7.74 (m, 2 H), 7.64–7.59 (m, 2 H), 7.56 (td, J = 7.6, 1.6 Hz, 1 H), 7.52–7.45 (m, 4 H).
13C NMR (CDCl3): δ = 135.22, 134.35, 134.06, 133.76, 133.06, 131.61, 130.40, 129.93, 128.15, 127.86, 126.29, 124.24, 84.38.

7b-Methyl-7bH-benzo[d][1,2]oxazireno[2,3-b]isothiazol2-3,3-dioxide (2f)
According to the representative procedure, 2f (181.5 mg, 1.00 mmol) was treated with aq. NaOCl to provide a crude product (28.0 mg) containing 2f (45%, 1H NMR yield using dimethyl sulfone as an internal standard). All the peaks shown below appeared in the 1H and 13C NMR spectra of the crude product.

1H NMR (CDCl3): δ = 8.03 (brs, 1 H), 7.96 (d, J = 8.4 Hz, 2 H), 7.89–7.84 (m, 3 H), 7.57–7.52 (m, 2 H), 7.45 (d, J = 8.0 Hz, 2 H), 7.40 (dd, J = 8.8, 2.0 Hz, 1 H), 5.61 (s, 1 H), 2.50 (s, 3 H).
13C NMR (CDCl3): δ = 146.43, 142.20, 134.72, 132.57, 131.50, 130.07, 129.75, 129.45, 128.86, 128.33, 127.92, 127.88, 127.64, 126.82, 123.45, 21.86.

3-(Naphthalene-2-yl)-2-tosyl-1,2-oxaziridine (2b)
According to the typical procedure, 1b (312.5 mg, 1.01 mmol) was treated with aq. NaOCl to provide a crude product (277.6 mg) containing 2b (67%, 1H NMR yield using dimethyl sulfone as an internal standard). All the peaks shown below appeared in the 1H and 13C NMR spectra of the crude product.

Insert 1H NMR and 13C NMR data here.
13C NMR (CDCl$_3$): $\delta = 98.77, 54.06, 48.32, 45.80, 33.64, 28.39, 26.56, 20.55, 19.50.

Funding Information

This work was performed under the Cooperative Research Program of the 'Network Joint Research Center for Materials and Devices'.

References and Notes

(4) Galvin, J. M.; Jacobsen, E. N.; Palucci, M.; Frederick, M. O. e-EROS 2013, DOI: 10.1002/047084289X.rs084.pub3 ; and references cited therein.

(6) Given that addition of 10 mol% tetrabutylammonium hydroxide (Bu$_4$NOH) accelerated the oxidation reaction in a biphasic solvent system using trifluoromethylbenzene (benzotrifluoride, BTF), the reaction might proceed enantioselectively if an optically pure alkylammonium salt was employed. As a preliminary result, the desired product 2a was obtained with 7% ee when the reaction was conducted using N-benzylcinchonidinium chloride.