Synlett 2019; 30(08): 893-902
DOI: 10.1055/s-0037-1611705
account
© Georg Thieme Verlag Stuttgart · New York

Stereocontrol in the Synthesis of β-Lactams Arising from the Interlocked Structure of Benzylfumaramide-Based Hydrogen-Bonded [2]Rotaxanes

,
Carmen Lopez-Leonardo
,
Mateo Alajarin
,
This work was supported by MINECO (CTQ2017-87231-P) with joint financing by FEDER Funds from the European Union, and Fundacion Seneca-CARM (Project 20811/PI/18).
Further Information

Publication History

Received: 23 October 2018

Accepted after revision: 13 December 2018

Publication Date:
18 January 2019 (online)


Dedicated to the memory of our friend and colleague Professor Angel Vidal

Abstract

β-Lactams are highly valuable compounds due to their antibiotic activity. Among the number of well-established methodologies for building this privileged scaffold, our research group has settled on a novel synthetic approach for their preparation. This Account focuses on our latest progress in the synthesis of these compounds through a novel base-promoted intramolecular cyclization of benzylfumaramide-based rotaxanes. The mechanical bond plays a significant role in the process by activating the cyclization inside the macrocycle void, avoiding the formation of byproducts and fully controlling the diastereoselectivity. Further investigations on this transformation led to the formation of ­enantioenriched 2-azetidinones. The cyclization of enantiopure interlocked α-methylbenzylfumaramides allows the formation of two new stereogenic centers in the lactamic four-membered ring, one of them a quaternary carbon, keeping the initial configuration of the chiral group of the starting material.

1 Introduction

1.1 Mechanically Interlocked Molecules and Applications

1.2 Chemical Stabilization of the Mechanical Bond

2 Literature Methods for 4-exo-trig Ring Closures of Fumaramides for the Synthesis of β-Lactams

3 Our First Encounter with Interlocked β-Lactams

3.1 An Unexpected Result in Our Laboratory

3.2 Finding the Optimal Reaction Conditions

3.3 Elucidating the Effects of the Mechanical Bond

4 Diastereoselective Synthesis of Interlocked and Non-Interlocked β-Lactams

5 Asymmetric Cyclization of Enantiopure Interlocked Fumaramides

6 Conclusions

 
  • References

  • 1 Bruns CJ, Stoddart JF. In The Nature of the Mechanical Bond: From Molecules to Machines . John Wiley & Sons; New York: 2017
  • 2 Xue M, Yang Y, Chi X, Yan X, Huang F. Chem. Rev. 2015; 115: 7398
  • 3 Neal EA, Goldup SM. Chem. Commun. 2014; 50: 5128
    • 4a Balzani V, Credi A, Venturi M. Molecular Machines Based on Rotaxanes and Catenanes . In From Non-Covalent Assemblies to Molecular Machines . Sauvage J.-P, Gaspard P. Wiley-VCH; Weinheim: 2011: 159
    • 4b Stoddart JF. Chem. Soc. Rev. 2009; 38: 1802
    • 4c Kay ER, Leigh DA, Zerbetto F. Angew. Chem. Int. Ed. 2007; 46: 72
    • 5a Chmielewski MJ, Davis JJ, Beer PD. Org. Biomol. Chem. 2009; 7: 415
    • 5b Denis M, Qin L, Turner P, Jolliffe KA, Goldup SM. Angew. Chem. Int. Ed. 2018; 57: 5315
    • 5c Lim JY. C, Marques I, Félix V, Beer PD. Angew. Chem. Int. Ed. 2018; 57: 584
    • 6a Berna J, Leigh DA, Lubomska M, Mendoza SM, Perez EM, Rudolf P, Teobaldi G, Zerbetto F. Nat. Mater. 2005; 4: 704
    • 6b Lin Q, Hou X, Ke C. Angew. Chem. Int. Ed. 2017; 56: 4452
  • 7 Klajn R, Stoddart JF, Grzybowski BA. Chem. Soc. Rev. 2010; 39: 2203
    • 9a Leigh DA, Marcos V, Wilson MR. ACS Catal. 2014; 4: 4490
    • 9b Blanco V, Leigh DA, Marcos V. Chem. Soc. Rev. 2015; 44: 5341
    • 9c Pan T, Liu J. ChemPhysChem 2016; 17: 1752
    • 9d van Dijk L, Tilby MJ, Szpera R, Smith OA, Bunce HA. P, Fletcher SP. Nat. Rev. Chem. 2018; 2: 0117
    • 10a Thordarson P, Bijsterveld EJ. A, Rowan AE, Nolte RJ. M. Nature 2003; 424: 915
    • 10b Hattori G, Hori T, Miyake Y, Nishibayashi Y. J. Am. Chem. Soc. 2007; 129: 12930
    • 10c Galli M, Lewis JE. M, Goldup SM. Angew. Chem. Int. Ed. 2015; 54: 13545
    • 10d Hoekman S, Kitching MO, Leigh DA, Papmeyer M, Roke D. J. Am. Chem. Soc. 2015; 137: 7656
    • 10e Martinez-Cuezva A, Saura-Sanmartin A, Nicolas-Garcia T, Navarro C, Orenes R.-A, Alajarin M, Berna J. Chem. Sci. 2017; 8: 3775
    • 11a Tachibana Y, Kihara N, Takata T. J. Am. Chem. Soc. 2004; 126: 3438
    • 11b Berna J, Alajarin M, Orenes R.-A. J. Am. Chem. Soc. 2010; 132: 10741
    • 11c Blanco V, Carlone A, Hänni KD, Leigh DA, Lewandowski B. Angew. Chem. Int. Ed. 2012; 51: 5166
    • 11d Lewandowski B, De Bo G, Ward JW, Papmeyer M, Kuschel S, Aldegunde MJ, Gramlich PM. E, Heckmann D, Goldup SM, D’Souza DM, Fernandes AE, Leigh DA. Science 2013; 339: 189
    • 11e Blanco V, Leigh DA, Lewandowska U, Lewandowski B, Marcos V. J. Am. Chem. Soc. 2014; 136: 15775
    • 11f Blanco V, Leigh DA, Marcos V, Morales-Serna JA, Nussbaumer AL. J. Am. Chem. Soc. 2014; 136: 4905
    • 11g Cakmak Y, Erbas-Cakmak S, Leigh DA. J. Am. Chem. Soc. 2016; 138: 1749
    • 11h Mitra R, Zhu H, Grimme S, Niemeyer J. Angew. Chem. Int. Ed. 2017; 56: 11456
    • 12a Parham AH, Windisch BB, Vögtle F. Eur. J. Org. Chem. 1999; 1233
    • 12b Ghosh P, Mermagen O, Schalley CA. Chem. Commun. 2002; 2628
    • 12c Oku T, Furusho Y, Takata T. Org. Lett. 2003; 5: 4923
    • 12d Leigh DA, Perez EM. Chem. Commun. 2004; 2262
    • 12e D’Souza DM, Leigh DA, Mottier L, Mullen KM, Paolucci F, Teat SJ, Zhang S. J. Am. Chem. Soc. 2010; 132: 9465
    • 12f Lahlali H, Jobe K, Watkinson M, Goldup SM. Angew. Chem. Int. Ed. 2011; 50: 4151
    • 12g Winn J, Pinczewska A, Goldup SM. J. Am. Chem. Soc. 2013; 135: 13318
  • 13 De Bo G, Dolphijn G, McTernan CT, Leigh DA. J. Am. Chem. Soc. 2017; 139: 8455
    • 14a Anderson S, Claridge TD. W, Anderson HL. Angew. Chem. Int. Ed. 1997; 36: 1310
    • 14b Buston JE. H, Young JR, Anderson HL. Chem. Commun. 2000; 905
    • 15a Arunkumar E, Forbes CC, Noll BC, Smith BD. J. Am. Chem. Soc. 2005; 127: 3288
    • 15b Gassensmith JJ, Baumes JM, Smith BD. Chem. Commun. 2009; 6329
    • 15c White AG, Fu N, Leevy WM, Lee J.-J, Blasco MA, Smith BD. Bioconjugate Chem. 2010; 21: 1297
    • 16a Alcaide B, Almendros P, Aragoncillo C. Chem. Rev. 2007; 107: 4437
    • 16b Pitts CR, Lectka T. Chem. Rev. 2014; 114: 7930
    • 16c Hosseyni S, Jarrahpour A. Org. Biomol. Chem. 2018; 16: 6840

      For selected recent examples of β-lactam synthesis and biological studies, see:
    • 17a Mehra V, Singh P, Manhas N, Kumar V. Synlett 2014; 25: 1124
    • 17b Cele ZE. D, Arvidsson PI, Kruger HG, Govender T, Naicker T. Eur. J. Org. Chem. 2015; 638
    • 17c Tarui A, Miyata E, Tanaka A, Sato K, Omote M, Ando A. Synlett 2015; 26: 55
    • 17d Robb MJ, Moore JS. J. Am. Chem. Soc. 2015; 137: 10946
    • 17e Alcaide B, Almendros P, Cembellín S, del Campo TM. J. Org. Chem. 2015; 80: 4650
    • 17f Neochoritis CG, Stotani S, Mishra B, Dömling A. Org. Lett. 2015; 17: 2002
    • 17g Baiula M, Galletti P, Martelli G, Soldati R, Belvisi L, Civera M. J. Med. Chem. 2016; 59: 9721
    • 17h Majewski MW, Miller PA, Oliver AG, Miller MJ. J. Org. Chem. 2017; 82: 737
    • 17i Chauhan P, Mahajan S, Kaya U, Valkonen A, Rissanen K, Enders D. Adv. Synth. Catal. 2016; 358: 3173
    • 17j Zhang Q, Tang H.-Y, Chen M, Yu J, Li H, Gao J.-M. Org. Biomol. Chem. 2017; 15: 4456
    • 17k Ejima H, Wakita F, Imamura R, Kato T, Hosokawa S. Org. Lett. 2017; 19: 2530
    • 18a Staudinger H. Justus Liebigs Ann. Chem. 1907; 356: 51
    • 18b Gololobov YG, Kasukhin LF. Tetrahedron 1992; 48: 1353
    • 19a Clayden J, Watson DW, Chambers M, Sharp M, Park T. Chem. Commun. 2003; 2582
    • 19b Yoshimura T, Takuwa M, Tomohara K, Uyama M, Hayashi K, Yang P, Hyakutake R, Sasamori T, Tokitoh N, Kawabata T. Chem. Eur. J. 2012; 18: 15330
    • 20a Berna J, Alajarin M, Marín-Rodríguez C, Franco-Pujante C. Chem. Sci. 2012; 3: 2314
    • 20b Berna J, Alajarin M, Martínez-Espín JS, Buriol L, Martins MA. P, Orenes R.-A. Chem. Commun. 2012; 48: 5677
    • 20c Martinez-Cuezva A, Berná J, Orenes R.-A, Pastor A, Alajarín M. Angew. Chem. Int. Ed. 2014; 53: 6762
    • 20d Martinez-Cuezva A, Pastor A, Cioncoloni G, Orenes R.-A, Alajarín M, Symes MD, Berná J. Chem. Sci. 2015; 6: 3087
    • 20e Martinez-Cuezva A, Valero-Moya S, Alajarín M, Berná J. Chem. Commun. 2015; 14501
    • 20f Martinez-Cuezva A, Carro-Guillen F, Pastor A, Marin-Luna M, Orenes R.-A, Alajarín M, Berná J. ChemPhysChem 2016; 17: 1920
    • 20g Tron A, Pianet I, Martinez-Cuezva A, Tucker JH. R, Pisciottani L, Alajarin M, Berna J, McClenaghan ND. Org. Lett. 2016; 19: 154
    • 20h Martins MA. P, Rodrigues LV, Meyer AR, Frizzo CP, Hörner M, Zanatta N, Bonacorso HG, Berna J, Alajarin M. Cryst. Growth Des. 2017; 17: 5845
    • 20i Saura-Sanmartin A, Martinez-Espin J, Martinez-Cuezva A, Alajarín M, Berna J. Molecules 2017; 22: 1078
    • 20j Martins MA. P, Zimmer GC, Rodrigues LV, Orlando T, Buriol L, Alajarin M, Berna J, Frizzo CP, Bonacorso HG, Zanatta N. New J. Chem. 2017; 41: 13303
    • 20k Orlando T, Salbego PR. S, Zimmer GC, Pagliari AB, Bender CR, Rodrigues LV, Bonacorso HG, Zanatta N, Berna J, Martins MA. P. Eur. J. Org. Chem. 2018; 4978
    • 20l Saura-Sanmartin A, Martinez-Cuezva A, Pastor A, Bautista D, Berna J. Org. Biomol. Chem. 2018; 16: 6980
  • 21 Martinez-Cuezva A, Lopez-Leonardo C, Bautista D, Alajarin M, Berna J. J. Am. Chem. Soc. 2016; 138: 8726
    • 22a Miyaura N, Suzuki A. Chem. Rev. 1995; 95: 2457
    • 22b Martin R, Buchwald SL. Acc. Chem. Res. 2008; 41: 1461
    • 22c Maluenda I, Navarro O. Molecules 2015; 20: 7528
  • 24 Ashton PR, Baxter I, Fyfe MC. T, Raymo FM, Spencer N, Stoddart JF, White AJ. P, Williams DJ. J. Am. Chem. Soc. 1998; 120: 2297
    • 25a Affeld A, Hubner GM, Seel C, Schalley CA. Eur. J. Org. Chem. 2001; 2877
    • 25b Linnartz P, Bitter S, Schalley CA. Eur. J. Org. Chem. 2003; 4819
    • 25c Felder T, Schalley CA. Angew. Chem. Int. Ed. 2003; 42: 2258
    • 25d Martinez-Cuezva A, Rodrigues LV, Navarro C, Carro-Guillen F, Buriol L, Frizzo CP, Martins MA. P, Alajarin M, Berna J. J. Org. Chem. 2015; 80: 10049
  • 26 Martinez-Cuezva A, Bautista D, Alajarin M, Berna J. Angew. Chem. Int. Ed. 2018; 57: 6563

    • For selected examples of chiral induction by incorporation of an α-methylbenzyl substituent, see:
    • 27a Davies SG, Fenwick DR, Ichihara O. Tetrahedron: Asymmetry 1997; 8: 3387
    • 27b Palomo C, Oiarbide M, Dias F, Ortiz A, Linden A. J. Am. Chem. Soc. 2001; 123: 5602
    • 27c Soloshonok VA, Cai C, Yamada T, Ueki H, Ohfune Y, Hruby VJ. J. Am. Chem. Soc. 2005; 127: 15296
    • 27d Gomes LF. R, Veiros LF, Maulide N, Afonso CA. M. Chem. Eur. J. 2015; 21: 1449
    • 27e Wang P, Feng L.-W, Wang L, Li J.-F, Liao S, Tang Y. J. Am. Chem. Soc. 2015; 137: 4626
    • 27f Martínez AM, Rodriguez N, Gomez-Arrayas R, Carretero JC. Chem. Eur. J. 2017; 23: 11669
  • 28 Bragg RA, Clayden J. Tetrahedron Lett. 1999; 40: 8323
  • 29 Alezra V, Kawabata T. Synthesis 2016; 48: 2997

    • For examples of chiral lithiated amides, see:
    • 30a Clayden J, Knowles FE, Menet CJ. Tetrahedron Lett. 2003; 44: 3397
    • 30b Clayden JF, Knowles E, Menet CJ. Synlett 2003; 1701
    • 30c Arnott G, Clayden J, Hamilton SD. Org. Lett. 2006; 8: 5325