Synthesis 2019; 51(08): 1809-1818
DOI: 10.1055/s-0037-1611703
paper
© Georg Thieme Verlag Stuttgart · New York

A Tandem Sulfonylation and Knoevenagel Condensation for the Preparation of Sulfocoumarin-3-carboxylates

Ziyang Dong ‡
a   State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, College of Science, Beijing University of Chemical Technology, Beijing 100029, P. R. of China   Email: zhyang@mail.buct.edu.cn   Email: jxxu@mail.buct.edu.cn
,
Yang Chen ‡
a   State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, College of Science, Beijing University of Chemical Technology, Beijing 100029, P. R. of China   Email: zhyang@mail.buct.edu.cn   Email: jxxu@mail.buct.edu.cn
,
Zhiheng Yang
b   Department of Pharmacy, The First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, P. R. of China
,
a   State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, College of Science, Beijing University of Chemical Technology, Beijing 100029, P. R. of China   Email: zhyang@mail.buct.edu.cn   Email: jxxu@mail.buct.edu.cn
,
Jiaxi Xu*
a   State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, College of Science, Beijing University of Chemical Technology, Beijing 100029, P. R. of China   Email: zhyang@mail.buct.edu.cn   Email: jxxu@mail.buct.edu.cn
› Author Affiliations
This work is financially supported by the National Natural Science Foundation of China (No. 21602010 to Z.Y., and No. 21572017 to J.X.), the BUCT Fund for Discipline Construction and Development (Project No. XK1533, to Z.Y.), the China Postdoctoral Science Foundation (No. 2016M600900, to Z.Y.), and the Fundamental Research Funds for the Central Universities (XK1802-6, to Z.Y. and J.X.).
Further Information

Publication History

Received: 20 September 2018

Accepted after revision: 27 November 2018

Publication Date:
24 January 2019 (online)


These authors contributed equally to this work.

Abstract

Sulfocoumarins are key structural motifs in several bioactive molecules. Herein, we describe a simple, one-pot procedure for the synthesis of structurally diverse sulfonocoumarin-3-carboxylates by heating 2-hydroxyaryl aldehydes with an active sulfonyl chloride in the presence of pyridine. The process tolerates numerous functional groups including alkoxy, alkyl, halogen, nitro, and even nucleophilic phenolic hydroxy. Additionally, reactions of 2-hydroxyaryl ketones and 2-methylaminoaryl aldehydes give 4-substituted sulfocoumarins and 1-aza-2-sulfocoumarins, respectively. A gram-scale synthesis and further derivatizations are also reported. The ester group is easily removed via ­Happer’s decarboxylation.

Supporting Information

 
  • References

  • 1 Tanc M, Carta F, Bozdag M, Scozzafava A, Supuran CT. Bioorg. Med. Chem. 2013; 21: 4502
  • 2 Grandane A, Tanc M, Zalubovskis R, Supuran CT. Bioorg. Med. Chem. Lett. 2014; 24: 1256
    • 3a Grandane A, Tanc M, Zalubovskis R, Supuran CT. Bioorg. Med. Chem. 2014; 22: 1522
    • 3b Tars K, Vullo D, Kazaks A, Leitans J, Lends A, Grandane A, Zalubovskis R, Scozzafava A, Supuran CT. J. Med. Chem. 2013; 56: 293
  • 4 Grandane A, Tanc M, Zalubovskis R, Supuran CT. Bioorg. Med. Chem. 2015; 23: 1430
  • 5 Grandane A, Tanc M, Di Cesare Mannelli L, Carta F, Ghelardini C, Zalubovskis R, Supuran CT. J. Med. Chem. 2015; 58: 3975
  • 6 Tanc M, Carta F, Scozzafava A, Supuran CT. Org. Biomol. Chem. 2015; 13: 77
    • 7a Kim N, Min M, Hong S. Org. Chem. Front. 2015; 2: 1621
    • 7b Alcaide B, Almendros P, Aragoncillo C, Fernandez I, Gomez-Campillos G. Chem. Eur. J. 2016; 22: 285
  • 8 Hoogenboom BE, El-Faghi MS, Fink SC, Ihrig PJ, Langsjoen AN, Linn CJ, Maehling KL. J. Org. Chem. 1975; 40: 880
  • 9 Ghandi M, Bozcheloei AH, Nazari SH, Sadeghzadeh M. J. Org. Chem. 2011; 76: 9975
  • 10 Edwards DJ, Hadfield JA, Wallace TW, Ducki S. Org. Biomol. Chem. 2011; 9: 219
  • 11 Grandane A, Belyakov S, Trapencieris P, Zalubovskis R. Tetrahedron 2012; 68: 5541
    • 13a Yang Z, Xu J. J. Org. Chem. 2014; 79: 10703
    • 13b Yang Z, Chen N, Xu J. J. Org. Chem. 2015; 80: 3611
    • 13c Yang Z, Xu J. Tetrahedron 2015; 71: 2844
    • 13d Yang Z, Xu J. RSC Adv. 2015; 5: 78396
    • 13e Yang Z, Abdellaoui H, He W, Xu J. Molecules 2017; 22: 784
    • 13f Xu W, Fu Z, Yang Z, Zhang L, Xu J. Phosphorus, Sulfur Silicon Relat. Elem. 2018; 193: 335
    • 14a Yang Z, Xu J. Chem. Commun. 2014; 50: 3616
    • 14b Huang P, Yang Z, Xu J. Tetrahedron 2017; 73: 3255
  • 15 Cecchi L, De Sarlo F, Machetti F. Eur. J. Org. Chem. 2006; 21: 4852
  • 16 See: https://en.wikipedia.org/wiki/Non-nucleophilic_base (accessed Dec 21st, 2018).
  • 17 Rodima T, Kaljurand I, Pihl A, Maeemets V, Leito I, Koppel IA. J. Org. Chem. 2002; 67: 1873
  • 18 Brown HC, McDaniel DH, Häfliger O. Dissociation Constants . In Determination of Organic Structures by Physical Methods . Braude EA, Nachod FC. Academic Press; New York: 1955
  • 19 Linnell RH. J. Org. Chem. 1960; 25: 290
  • 20 Wei Y, Sastry GN, Zipse H. J. Am. Chem. Soc. 2008; 130: 3473
  • 21 For sulfene generation and as related mechanism, see refs. 13d, 13e, and 13f, and references cited therein.
  • 22 Gawron O, Duggan M, Grelechi CJ. Anal. Chem. 1952; 24: 969
    • 23a McGeachin SG. Can. J. Chem. 1966; 44: 2323
    • 23b Pieta M, Kedzia J, Janecka A, Pomorska DK, Rozalski M, Krajewska U, Janecki T. RSC Adv. 2015; 5: 78324
    • 23c Albert A, Yamamoto H. J. Chem. Soc. B: Phys. Org. 1966; 956
    • 23d Sridharan V, Ribelles P, Ramos MT, Menendez JC. J. Org. Chem. 2009; 74: 5715
    • 23e Younes EA, Hussein AQ, May MA, Fronczek FR. ARKIVOC 2011; (ii): 322
    • 23f Pettersson B, Bergman J, Svensson PH. Tetrahedron 2013; 69: 2647
  • 24 Shyshkina OO, Tkachuk TM, Volovnenko TA, Volovenko YM, Zubatyuk RI, Medviediev VV, Shishkin OV. Tetrahedron Lett. 2012; 53: 4296
  • 25 Jadhav MM, Vaghasiya JV, Patil DS, Soni SS, Sekar N. New J. Chem. 2018; 42: 5267
  • 26 Happer DA. R, Steenson BE. Synthesis 1980; 806