Synthesis of 4-(Arylmethyl)proline Derivatives

Simon Loosli
Carlotta Foletti
Marcus Papmeyer
Helma Wennemers*
ETH Zürich, Laboratory for Organic Chemistry, D-CHAB, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
Helma.Wennemers@org.chem.ethz.ch
◊ These authors contributed equally.
Published as part of the 30 Years SYNLETT – Pearl Anniversary Issue

Received: 20.12.2018
Accepted after revision: 16.01.2019
Published online: 25.01.2019
License terms: Creative Commons Attribution 4.0 International License

Abstract A synthesis of 4-(arylmethyl)proline by using Suzuki cross-couplings was developed. The route permits access to a variety of 4-substituted proline derivatives bearing various aryl moieties that expand the toolbox of proline analogues for studies in chemistry and biology.

Key words arylmethylprolines, prolines, hydroboration, Suzuki cross-coupling

Proline is the only proteogenic amino acid with a cyclic backbone, which confers to this residue a uniquely restricted conformation. Nature and scientists have used proline and its derivatives to regulate numerous processes, ranging from ion-gating and the structural integrity of skin to asymmetric catalysis.1–4 The development of proline analogues and their incorporation into peptides and other compounds is therefore of great interest. Proline derivatives with different substituents at Cγ are the most common, due to their natural occurrence and the ease of functionalization of (2S,4R)-4-hydroxyproline.1,2 Examples include derivatives with heteroatoms at Cγ, e.g., F, Cl, N3, NH2, or alkyl groups, e.g., Me and tBu.1,3 In contrast, derivatives with arylmethyl substituents at Cγ are less commonly utilized, possibly due to a lack of a straightforward synthetic route.

We became interested in proline derivatives bearing naphthyl moieties, for their value in the molecular recognition of RNA.7 Synthetic routes have been reported for the functionalization of proline at Cγ with benzylic or indolylmethyl substituents.8–10 However, we had limited success in transferring these reaction conditions, which rely on Wittig reactions of 4-oxoproline followed by hydrogenation, to larger aryl moieties (Scheme 1, top).

We therefore sought an alternative route and we envisioned Suzuki reactions between an organoborane–proline derivative and aryl halides as a strategy that might provide access to proline derivatives with various aryl groups (Scheme 1, bottom). Here, we report a general synthetic route to arylmethyl proline derivatives that permits the introduction of a broad range of aryl moieties at Cγ.

Our synthetic route relies on the hydroboration of the Boc/tBu-protected 4-methylene proline 5, which was obtained from (2S,4R)-4-hydroxy proline (1) by slight modification of a previously published procedure (Scheme 2).10 This four-step synthesis started with Boc-protection of 1, followed by oxidation to ketone 3, protection of the carboxylic acid as the tBu ester in 4, and introduction of an exocyclic methylene group by a Wittig reaction.11
Reassuringly, this route also permitted the synthesis of proline derivatives bearing substituted naphthyl moieties (7b and 7c) as well as phenyl (7d), 9-anthryl (7e), or pyren-1-yl (7f) substituents in good overall yields (60–83%: Scheme 3). All derivatives were obtained with a diastereoselectivity of ~3:2 in favor of the syn-product, as determined by analysis of 1H NMR NOE spectroscopy.

Because peptide syntheses typically require Fmoc-protected amino acids, we converted 7a–c into the respective Fmoc-amino acids 8a–c. Simultaneous removal of the tBu protecting groups in 6 M HCl in 1,4-dioxane, and subsequent Fmoc-protection afforded 8a–c in yields of 74–89% (Scheme 4). The diastereoisomers were separated by preparative reverse-phase HPLC to obtain enantiomerically pure amino acids at a scale of up to 2.5 g.

In conclusion, we have introduced a synthetic route to access proline derivatives bearing a variety of arylmethyl substituents at the γ-position. The products were obtained in good yields for every tested aromatic moiety. The diastereoselectivity of the hydroboration step was modest, but the diastereoisomeric products could be separated on a gram scale. Installation of a Fmoc-protecting group was straightforward. Thus, the route provides access to proline derivatives with a variety of arylmethyl moieties at Cy that are suitably protected for solid-phase peptide synthesis. We envision these derivatives as being valuable additions to the toolkit of proline analogues for applications in chemistry and chemical biology.

Funding Information

The authors gratefully acknowledge financial support by the Swiss National Science Foundation (grant 200020_178805).

Supporting Information

Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1611672.

References and Notes

Typical Procedure

An oven-dried Schlenk flask was charged with methylamine derivative 5 (4.0 g, 14.1 mmol, 1 equiv) under N₂. A 0.5 M soln of 9-BBN in THF (31.0 mL, 15.5 mmol, 1.1 equiv) was added in one
portion, and the solution was stirred vigorously at 60 °C for 6 h. The mixture was then allowed to cool to r.t. and 5 M aq. KOH (5.6 mL, 5 M, 28.0 mmol, 2 equiv) was added. The mixture was stirred for 20 min, then 2-bromonaphthalene (7a; 4.8 g, 11.7 mmol, 1 equiv) was dissolved in a 6 M soln of HCl in 1,4-dioxane (110 mL), and the mixture was stirred for 3 h at r.t. The pH was adjusted to 8–9 with sat. aq NaHCO₃, then a soln of FmocCl (3.6 g, 14.0 mmol, 1.2 equiv) in 1,4-dioxane (50 mL) was added, and the mixture was stirred at r.t. for 2 h. Low-boiling volatiles were removed under reduced pressure, and EtOAc (50 mL) was added. The solution was acidified to pH 2–3 with 1 M HCl, and the organic phase was separated and extracted with EtOAc (3 × 100 mL). The combined organic layers were washed with brine, dried (MgSO₄), and filtered. All volatiles were removed under reduced pressure, and the product was purified by column chromatography (silica gel, 0–5% MeOH in CH₂Cl₂ with 0.1% HCO₂H) to give a white powder: yield: 4.7 g (84%). The diastereoisomers were subsequently separated by reverse-phase semipreparative HPLC [Reprosil-Gold 120 C18, 10 μm; 250 × 30 mm column, MeCN and H₂O–MeCN–TFA (100:1:0.1)].

NMR (126 MHz, CD₂Cl₂, 60 °C): δ = 7.92–7.79 (31.0, 3 H, Ar), 7.77–7.60 (m, 3 H, Ar), 7.59–7.44 (m, 4 H, Ar), 7.43–7.21 (m, 5 H, Ar), 4.55–4.41 (m, 2 H, CH₃–Fmoc), 4.41–4.28 (m, 1 H, Hα), 4.28–4.19 (m, 2 H, CH–Fmoc), 3.75–3.52 (m, 2 H, Hβ, Hγ); 13C NMR (500 MHz, CD₂Cl₂, 60 °C): δ = 173.2 (CO₂H), 156.4 (C=O₇₃), 143.5 (Ar), 141.1 (Ar), 137.0 (Ar), 133.4 (Ar), 132.1 (Ar), 128.2 (Ar), 127.6 (Ar), 127.5 (Ar), 127.4 (Ar), 127.0 (Ar), 126.9 (Ar), 126.7 (Ar), 126.1 (Ar), 125.5 (Ar), 124.8 (Ar), 119.8 (Ar), 67.9 (CH₃–Fmoc), 59.4 (Ca), 52.2 (G), 47.1 (CH–Fmoc), 39.7 (Cy), 38.8 (CH₃–Naph), 34.4 (Cy). HRMS (ESI+): m/z [M + H]+ calcd for C₂₃H₂₀NO₄: 478.1248; found: 478.1248. 1H NMR (500 MHz, CDCl₃, 60 °C): δ = 7.91–7.80 (31.0, 3 H, Ar), 7.73 (dd, J = 7.6, 2.9 Hz, 2 H, Ar), 7.62 (s, 1 H, Ar), 7.59–7.48 (m, 4 H, Ar), 7.39 (tt, J = 7.6, 1.4 Hz, 2 H, Ar), 7.35–7.27 (m, 3 H, Ar), 4.56–4.36 (m, 3 H, Ar), 3.01–2.79 (m, 2 H, CH₂–Naph), 2.57 (hept, J = 7.7 Hz, 1 H, Hγ), 2.50–2.36 (m, 1 H, Hβ), 2.12–1.93 (m, 1 H, Hγ). 13C NMR (500 MHz, CDCl₃, 60 °C): δ = 173.3 (CO₂H), 156.4 (C=O₇₃), 143.5 (Ar), 141.1 (Ar), 137.0 (Ar), 133.4 (Ar), 132.1 (Ar), 128.2 (Ar), 127.6 (Ar), 127.5 (Ar), 127.4 (Ar), 127.0 (Ar), 126.9 (Ar), 126.7 (Ar), 126.1 (Ar), 125.5 (Ar), 124.8 (Ar), 119.8 (Ar), 67.9 (CH₃–Fmoc), 59.4 (Ca), 52.2 (G), 47.1 (CH–Fmoc), 39.7 (Cy), 38.8 (CH₃–Naph), 34.4 (Cy). HRMS (ESI+): m/z [M + H]+ calcd for C₂₃H₂₀NO₄: 478.1248; found: 478.1248. 1H NMR (500 MHz, CDCl₃, 60 °C): δ = 7.91–7.80 (31.0, 3 H, Ar), 7.73 (dd, J = 7.6, 2.9 Hz, 2 H, Ar), 7.62 (s, 1 H, Ar), 7.59–7.48 (m, 4 H, Ar), 7.39 (tt, J = 7.6, 1.4 Hz, 2 H, Ar), 7.35–7.27 (m, 3 H, Ar), 4.56–4.36 (m, 3 H, Ar), 3.01–2.79 (m, 2 H, CH₂–Naph), 2.57 (hept, J = 7.7 Hz, 1 H, Hγ), 2.50–2.36 (m, 1 H, Hβ), 2.12–1.93 (m, 1 H, Hγ). 13C NMR (500 MHz, CDCl₃, 60 °C): δ = 173.3 (CO₂H), 156.4 (C=O₇₃), 143.5 (Ar), 141.1 (Ar), 137.0 (Ar), 133.4 (Ar), 132.1 (Ar), 128.2 (Ar), 127.6 (Ar), 127.5 (Ar), 127.4 (Ar), 127.0 (Ar), 126.9 (Ar), 126.7 (Ar), 126.1 (Ar), 125.5 (Ar), 124.8 (Ar), 119.8 (Ar), 67.9 (CH₃–Fmoc), 59.4 (Ca), 52.2 (G), 47.1 (CH–Fmoc), 39.7 (Cy), 38.8 (CH₃–Naph), 34.4 (Cy). HRMS (ESI+): m/z [M + H]+ calcd for C₂₃H₂₀NO₄: 478.1248; found: 478.1248. 1H NMR (500 MHz, CDCl₃, 60 °C): δ = 7.91–7.80 (31.0, 3 H, Ar), 7.73 (dd, J = 7.6, 2.9 Hz, 2 H, Ar), 7.62 (s, 1 H, Ar), 7.59–7.48 (m, 4 H, Ar), 7.39 (tt, J = 7.6, 1.4 Hz, 2 H, Ar), 7.35–7.27 (m, 3 H, Ar), 4.56–4.36 (m, 3 H, Ar), 3.01–2.79 (m, 2 H, CH₂–Naph), 2.57 (hept, J = 7.7 Hz, 1 H, Hγ), 2.50–2.36 (m, 1 H, Hβ), 2.12–1.93 (m, 1 H, Hγ). 13C NMR (500 MHz, CDCl₃, 60 °C): δ = 173.3 (CO₂H), 156.4 (C=O₇₃), 143.5 (Ar), 141.1 (Ar), 137.0 (Ar), 133.4 (Ar), 132.1 (Ar), 128.2 (Ar), 127.6 (Ar), 127.5 (Ar), 127.4 (Ar), 127.0 (Ar), 126.9 (Ar), 126.7 (Ar), 126.1 (Ar), 125.5 (Ar), 124.8 (Ar), 119.8 (Ar), 67.9 (CH₃–Fmoc), 59.4 (Ca), 52.2 (G), 47.1 (CH–Fmoc), 39.7 (Cy), 38.8 (CH₃–Naph), 34.4 (Cy). HRMS (ESI+): m/z [M + H]+ calcd for C₂₃H₂₀NO₄: 478.1248; found: 478.1248.