Syn lett

D. Ghorai et al.

429

Letter

Air-Stable Secondary Phosphine Oxides for Nickel-Catalyzed Cross-Couplings of Aryl Ethers by C–O Activation

Debasish Ghorai^{a,b} Joachim Loup^a Giuseppe Zanoni^b Lutz Ackermann^{*}a [©]

^a Institut für Organische und Biomolekulare Chemie, Georg-August-Universität, Tammannstraße 2, 37077 Göttingen, Germany Lutz.Ackermann@chemie.uni-goettingen.de

^b Department of Chemistry, University of Pavia, Viale Taramelli 10, 27100 Pavia, Italy

Published as part of the 30 Years SYNLETT - Pearl Anniversary Issue

Received: 02.12.2018 Accepted after revision: 06.01.2019 Published online: 15.01.2019 DOI: 10.1055/s-0037-1611663; Art ID: st-2018-b0782-I

License terms: (cc)(i) = (s)

Abstract Air- and moisture-stable secondary phosphine oxides (SPOs) enabled nickel-catalyzed Kumada–Corriu cross-couplings of various arylmethyl ethers at room temperature by challenging C–O activation.

Key words C-O activation, arylation, cross-coupling, secondary phosphine oxide, nickel

Transition-metal-catalyzed cross-coupling reactions have emerged as a uniquely powerful tool for the assembly of substituted biaryl motifs.¹ Thus far, these cross-couplings have heavily relied on aryl halides as electrophilic coupling reagents. In contrast, easily accessible phenol-based electrophiles have recently undergone a renaissance as attractive alternatives.² On the basis of Wenkert's early studies from 1979,³ the considerable potential of phenol-derived substrates has only recently been fully recognized. Thus, versatile cross-couplings have been realized with challenging carbamates, carbonates, sulfamates, silvloxyarenes, esters and ethers, among others, prominently featuring nickel catalysis.⁴ Generally, these nickel catalysts largely require electron-rich tertiary phosphines as stabilizing ligands to guarantee efficacy in the key C–O bond scission.⁴ Unfortunately, these electron-rich tertiary phosphines are usually highly air-sensitive, with a documented half-life for the aerobic oxidation of tri-*t*-butyl-phosphine of a few minutes.⁵

The (heteroatom-substituted) secondary phosphine oxides (HA)SPOs represent uniquely powerful ancillary preligands for metal catalysis because of their unique features, including the air- and moisture-stable nature, among others.⁶ Notably, air-stable SPOs undergo a self-assembly process in the presence of transition metals to generate a monoanionic bidentate chelate coordination environment (Scheme 1, a).⁶ While Ackermann and others have unraveled the considerable potential of SPO complexes towards a wealth of efficient cross-coupling reactions with various aryl halides,⁷ the possibility of employing air-stable SPO preligands for more challenging C–O activations with aryl ethers has thus far proven elusive. Within our program on sustainable transition-metal-catalyzed transformations⁸ and selective C–O activation,⁹ we hence became attracted to probing the unprecedented use of air-stable SPOs preligands for cross-couplings with easily available aryl ethers, the result of which we report herein. Notable features of our findings include (i) air- and moisture-stable SPOs for efficient C-O activations, (ii) earth-abundant nickel catalysis, and (iii) exceedingly mild reaction conditions at room temperature (Scheme 1, b).

Scheme 1 (a) Self-assembly with SPOs, (b) nickel/SPO-catalyzed C–O activation

	ſ	THIEME	
Syn <mark>lett</mark>	D. Ghorai et al.	OPEN Access	Lette

430

We initiated our studies by probing reaction conditions for the envisioned cross-coupling of ether **1a** with Ni(acac)₂ and Ph₂P(O)H (L1) in toluene at a room temperature of 23 °C (Table 1, entry 1). Among a variety of preligands and solvents, the electron-rich HASPO L7 as well as (n-Bu)₂P(O)H (**L8**) and THF gave optimal results, respectively (entries 2-13). NiCl₂(DME) proved to be most effective (entries 14-17). It is noteworthy that under otherwise identical reaction conditions, the bidentate ligand dppp featured a significantly inferior performance (entry 18). A control experiment verified the essential role of the nickel catalyst (entry 19).

Table 1 Optimization of the Nickel/SPO-Catalyzed C-O Activation of Ether 1aª

Entry	Ni Catalyst	SPO	Solvent	Yield (%)
1	Ni(acac) ₂	L1	toluene	10
2	Ni(acac) ₂	L2	toluene	12
3	Ni(acac) ₂	L3	toluene	25
4	Ni(acac) ₂	L4	toluene	35
5	Ni(acac) ₂	L5	toluene	23
6	Ni(acac) ₂	L6	toluene	50
7	Ni(acac) ₂	L6	THF	64
8	Ni(acac) ₂	L1	THF	15
9	Ni(acac) ₂	L5	THF	21
10	Ni(acac) ₂	L3	THF	60
11	Ni(acac) ₂	L4	THF	48
12	Ni(acac) ₂	L7	THF	69
13	Ni(acac) ₂	L8	THF	83
14	Ni(OTf) ₂	L8	THF	53
15	NiBr ₂	L8	THF	n.r.

Entry	Ni Catalyst	SPO	Solvent	Yield (%)
16	NiCl ₂ (DME)	L8	THF	90
17	NiCl ₂ (DME)	L8	THF	68 ^b
18	NiCl ₂ (DME)	dppp	THF	39 ^c
19	-	L8	THF	n.r.

^a Reaction conditions: **1a** (0.50 mmol), *p*-TolMgBr (0.75 mmol), [Ni] (5.0 mol%), (HA)SPO (10 mol%), solvent (1.5 mL), 23 °C, 16 h; yield of isolated product given; n.r. = no reaction. SPO **L8** (5.0 mol%).

^c dppp (5.0 mol%).

Having the optimized reaction conditions for the nickel/SPO-catalyzed C-O activation in hand, we tested its versatility with a representative set of ethers **1** (Scheme 2). Thus, a variety of naphthyl ethers 1 were identified as viable substrates for the Kumada-Corriu cross-coupling to deliver the desired products 2 with high catalytic efficacy. Notably, the nickel catalyst derived from the air-stable SPO L8 even proved amenable to the chemoselective synthesis of biarvl **2b** and the sterically congested mesityl nucleophiles with comparable levels of activity (2d and 2i).

NiCl₂(DME) (10 mol%) and L8 (20 mol%)

Georg Thieme Verlag Stuttgart · New York - Synlett 2019, 30, 429-432

431

Based on our previous literature reports,^{6c-d,10} the working mode of the air-stable SPO-enabled C–O activation is suggested to initially involve the formation of complex **3** through self-assembly, along with the subsequent C–O activation by the key hetero-bimetallic intermediate **4** (Scheme 3).

In summary, we have reported on the first use of airstable secondary phosphine oxides (SPOs) for challenging cross-couplings of aryl ethers by C–O activation.¹¹ Thus, in situ generated nickel catalysts enabled efficient Kumada– Corriu arylations of naphthyl ethers at room temperature, even when using sterically hindered aryl nucleophiles.

Funding Information

Generous support by the European Research Council under the European Community's Seventh Framework Program (FP7 2007-2013)/ERC Grant agreement no. 307535, and the Regione Lombardia – Cariplo Foundation is gratefully acknowledged.

Supporting Information

Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1611663.

References and Notes

- (a) Cherney, A. H.; Kadunce, N. T.; Reisman, S. E. Chem. Rev. 2015, 115, 9587. (b) Johansson Seechurn, C. C.; Kitching, M. O.; Colacot, T. J.; Snieckus, V. Angew. Chem. Int. Ed. 2012, 51, 5062. (c) Modern Arylation Methods, 2nd ed; Ackermann, L., Ed.; Wiley-VCH: Weinheim, 2009. (d) Beller, M.; Bolm, C. Transition Metals for Organic Synthesis; Wiley-VCH: Weinheim, 2004. (e) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457.
- (2) Kozhushkov, S. I.; Potukuchi, H. K.; Ackermann, L. Catal. Sci. Technol. 2013, 3, 562.
- (3) (a) Wenkert, E.; Michelotti, E. L.; Swindell, C. S.; Tingoli, M. J. Org. Chem. 1984, 49, 4894. (b) Wenkert, E.; Michelotti, E. L.; Swindell, C. S. J. Am. Chem. Soc. 1979, 101, 2246.
- (4) Representative reviews: (a) Tobisu, M.; Chatani, N. Acc. Chem. Res. 2015, 48, 1717. (b) Su, B.; Cao, Z.-C.; Shi, Z.-J. Acc. Chem. Res. 2015, 48, 886. (c) Tollefson, E. J.; Hanna, L. E.; Jarvo, E. R. Acc. Chem. Res. 2015, 48, 2344. (d) Tasker, S. Z.; Standley, E. A.;

Jamison, T. F. Nature 2014, 509, 299. (e) Cornella, J.; Zarate, C.; Martin, R. Chem. Soc. Rev. 2014, 43, 8081. (f) Li, B. J.; Yu, D. G.; Sun, C. L.; Shi, Z. J. Chem. Eur. J. 2011, 17, 1728. (g) Rosen, B. M.; Quasdorf, K. W.; Wilson, D. A.; Zhang, N.; Resmerita, A.-M.; Garg, N. K.; Percec, V. Chem. Rev. 2011, 111, 1346. (h) Yu, D.-G.; Li, B.-I.: Shi, Z.-I. Acc. Chem. Res. 2010. 43, 1486. Selected examples: (i) Wang, T.-H.; Ambre, R.; Wang, Q.; Lee, W.-C.; Wang, P.-C.; Liu, Y.; Zhao, L.; Ong, T.-G. ACS Catal. 2018, 8, 11368. (j) Cao, Z.-C.; Luo, Q.-Y.; Shi, Z.-J. Org. Lett. 2016, 18, 5978. (k) Zhang, J.; Xu, J.; Xu, Y.; Sun, H.; Shen, Q.; Zhang, Y. Organometallics 2015, 34, 5792. (1) Iglesias, M. J.; Prieto, A.; Nicasio, M. C. Org. Lett. 2012, 14, 4318. (m) Xie, L.-G.; Wang, Z.-X. Chem. Eur. J. 2011, 17, 4972. (n) Dankwardt, J. W. Angew. Chem. Int. Ed. 2004, 43, 2428. For general reviews on nickel catalyzed transformations, see: (o) Castro, L. C. M.: Chatani, N. Chem. Lett. 2015, 44, 410. (p) Yamaguchi, J.; Muto, K.; Itami, K. Eur. J. Org. Chem. 2013, 19. (q) Nakao, Y. Chem. Rec. 2011, 11, 242, and references cited therein.

- (5) Netherton, M. R.; Fu, G. C. Org. Lett. 2001, 3, 4295.
- (6) Select reviews: (a) Herault, D.; Nguyen, D. H.; Nuel, D.; Buono, G. Chem. Soc. Rev. 2015, 44, 2508. (b) Shaikh, T. M.; Weng, C.-M.; Hong, F.-E. Coord. Chem. Rev. 2012, 256, 771. (c) Ackermann, L. Isr. J. Chem. 2010, 50, 652. (d) Ackermann, L. Synthesis 2006, 1557. (e) Dubrovina, N. V.; Börner, A. Angew. Chem. Int. Ed. 2004, 43, 5883.
- (7) (a) Ghorai, D.; Müller, V.; Keil, H.; Stalke, D.; Zanoni, G.; Tkachenko, B. A.; Schreiner, P. R.; Ackermann, L. Adv. Synth. Catal. 2017, 359, 3137. (b) Hu, C.-Y.; Chen, Y.-Q.; Lin, G.-Y.; Huang, M.-K.; Chang, Y.-C.; Hong, F.-E. Eur. J. Inorg. Chem. 2016, 3131. (c) Cano, I.; Tschan, M. J. L.; Martínez-Prieto, L. M.; Philippot, K.; Chaudret, B.; van Leeuwen, P. W. N. M. Catal. Sci. Technol. 2016, 6, 3758. (d) Wellala, N. P.; Guan, H. Org. Biomol. Chem. 2015, 13, 10802. (e) Cano. I.: Huertos. M. A.: Chapman. A. M.; Buntkowsky, G.; Gutmann, T.; Groszewicz, P. B.; van Leeuwen, P. W. N. M. J. Am. Chem. Soc. 2015, 137, 7718. (f) Ackermann, L.; Kapdi, A. R.; Fenner, S.; Kornhaass, C.; Schulzke, C. Chem. Eur. J. 2011, 17, 2965. (g) Ackermann, L.; Potukuchi, H. K.; Kapdi, A. R.; Schulzke, C. Chem. Eur. J. 2010, 16, 3300. (h) Ackermann, L.; Vicente, R.; Hofmann, N. Org. Lett. 2010, 11, 4274. (i) Achard, T.; Giordano, L.; Tenaglia, A.; Gimbert, Y.; Buono, G. Organometallics 2010, 29, 3936. (j) Christiansen, A.; Selent, D.; Spannenberg, A.; Baumann, W.; Franke, R.; Börner, A. Organometallics 2010, 29, 3139. (k) Christiansen, A.; Li, C.; Garland, M.; Selent, D.; Ludwig, R.; Spannenberg, A.; Baumann, W.; Franke, R.; Börner, A. Eur. J. Org. Chem. 2010, 2733. (1) Ackermann, L.; Barfüßer, S. Synlett 2009, 808. (m) Yang, D. X.; Colletti, S. L.; Wu, K.; Song, M.; Li, G. Y.; Shen, H. C. Org. Lett. 2009, 11, 381. (n) Billingsley, K. L.; Buchwald, S. L. Angew. Chem., Int. Ed. Engl. 2008, 47, 4695. (o) Ackermann, L.; Born, R.; Spatz, J. H.; Meyer, D. Angew. Chem. Int. Ed. 2005, 44, 7216.
- (8) (a) Gandeepan, P.; Müller, T.; Zell, D.; Cera, G.; Warratz, S.; Ackermann, L. Chem. Rev. 2019, in press; doi: 10 1021/acs.chemrev.8b00507. (b) Lorion, M. M.; Maindan, K.; Kapdi, A. R.; Ackermann, L. Chem. Soc. Rev. 2017, 46, 7399. (c) Moselage, M.; Li, J.; Ackermann, L. ACS Catal. 2016, 6, 498. (d) Liu, W.; Ackermann, L. ACS Catal. 2016, 6, 3743.
- (9) (a) Sauermann, N.; Loup, J.; Kootz, D.; Berkessel, A.; Ackermann, L. Synthesis 2017, 49, 3476. (b) Song, W.; Ackermann, L. Angew. Chem. Int. Ed. 2012, 51, 8251. (c) Ackermann, L.; Pospech, J.; Potukuchi, H. K. Org. Lett. 2012, 14, 2146. (d) Ackermann, L.;

		432	
		THIEME	
Syn <mark>lett</mark>	D. Ghorai et al.	OPEN ACCESS	Letter

Althammer, A.; Born, R. *Angew. Chem. Int. Ed.* **2006**, 45, 2619. (e) Moselage, M.; Sauermann, N.; Richter, S. C.; Ackermann, L. *Angew. Chem. Int. Ed.* **2015**, *54*, 6352.

- (10) Ackermann, L. Synlett 2007, 507.
- (11) Representative Experimental Procedure and Characterization Data

A mixture of 2-methoxynaphthalene (**1a**) (79 mg, 0.5 mmol), [NiCl₂(DME)] (6.0 mg, 0.025 mmol, 5.0 mol%), and **L8** (8.0 mg, 0.05 mmol, 10.0 mol%) was stirred in THF (1.5 mL) for 2 min at ambient temperature under N₂. Then, *p*-TolMgBr (1.0 M in THF, 0.75 mL, 0.75 mmol) was added, and the resulting solution was stirred for 16 h at ambient temperature. To the reaction was added aqueous HCl (1 M, 5 mL) and then EtOAc (5 mL), and the separated aqueous phase was extracted with EtOAc (2×5 mL). The combined organic layers were dried with anhydrous Na₂SO₄ and concentrated in vacuo. The remaining residue was purified by column chromatography on silica gel (*n*-hexane) to yield **2a** (98 mg, 90%) as a colorless solid. Mp 93–95 °C. IR (ATR): 3054, 3024, 1501, 1351, 893, 856, 811, 748 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ = 8.14 (d, *J* = 1.4 Hz, 1 H), 8.03–7.93 (m, 3 H), 7.85 (dd, *J* = 8.5, 1.9 Hz, 1 H), 7.74 (d, *J* = 8.1 Hz, 2 H), 7.64–7.54 (m, 2 H), 7.40 (dd, *J* = 8.5, 0.6 Hz, 2 H), 2.53 (s, 3 H). ¹³C NMR (75 MHz, CDCl₃): δ = 138.5 (C_q), 138.3 (C_q), 137.2 (C_q), 133.8 (C_q), 132.5 (C_q), 129.6 (CH), 128.4 (CH), 128.2 (CH), 127.7 (CH), 127.3 (CH), 126.3 (CH), 125.8 (CH), 125.6 (CH), 125.5 (CH), 21.2 (CH₃). MS (EI): *m/z* (relative intensity) = 218 [M]⁺ (100), 217 (41), 202 (35). HRMS (EI): *m/z* [M]⁺ calcd for [C₁₇H₁₄]⁺: 218.1096; found: 218.1094.