Visible Light-Promoted Formation of C–B and C–S Bonds under Metal- and Photocatalyst-Free Conditions

Lena Blank a
Maurizio Fagnoni b
Stefano Prorri b
Magnus Rueping * a

a Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
magnus.rueping@rwth-aachen.de
b PhotoGreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli, 12, 27100 Pavia, Italy

Published as part of the 50 Years SYNTHESIS – Golden Anniversary Issue

Abstract A green, efficient, photoinduced synthesis of arylboronic esters and aryl sulfides has been developed. Bench stable arylazo sulfones were used as radical precursors for a photocatalyst- and additive-free carbon–heteroatom bond formation under visible light. The protocols are applicable to a wide range of substrates, providing products in good yields.

Key words arylazo sulfones, aryl radicals, arylboronic esters, aryl sulfides

The development of mild and sustainable protocols for carbon–heteroatom bond formation has received an impressive attention in recent years. Indeed, aryl boronates and aryl sulfides play a key role in organic synthesis,1 catalysis,2 material science,3 and especially medicinal chemistry.4 Many natural products, drugs, and crop-protection substances bear sulfur-containing functional groups.5 In addition, since the introduction of Bortezomib in 2003 by the FDA (US Federal Drug Administration)6 for treating multiple myeloma, an increasing interest in boronic acids as drug candidates has developed.7

Classical methods for the generation of carbon–heteroatom bonds involve thermal reactions with organometal derivatives,8 the use of transition-metal catalysts in combination with expensive often air-sensitive ligands, strong bases, and additives in excess amounts.9 In order to reduce costs and contaminations with heavy metals, the development of more efficient and environmentally friendly alternative routes is highly desirable.

Several metal-free photoinduced borylation protocols of haloarenes,10 quaternary arylammonium salts, aryl triflates,11 and carboxylic acids12 as substrates have been published recently (Scheme 1, a–c). Such methods feature the advantage of avoiding the use of late transition metals. Nevertheless, they still suffer from several drawbacks, like the need of ultraviolet light irradiation and additives such as NaI, N,N,N′-tetramethyldiaminomethane (TMDAM), or Cs2CO3 in stochiometric amounts. An alternative for the preparation of arylboronic esters and aryl sulfides under photochemical conditions, takes advantage of aryl radicals and arylidiazonium salts (Scheme 1, d–f),13 which are widely used as aryl radical sources in photochemistry. The activation of arylidiazonium salts under visible light requires a photocatalyst (PC), since the aryl radical can only be formed by single-electron transfer (SET) from the excited state of the photocatalyst to the diazonium salt.

Scheme 1 Representative methods for the synthesis of arylboronic esters and aryl sulfides
Recently published protocols revealed that arylazo sulfoxones can be successfully used in the metal-free arylation of heterocycles and unactivated arenes without the need of additives. Herein, we report the application of arylazo sulfoxones in the photocatalyst-, metal- and additive-free, visible-light-driven synthesis of aryl sulfoxides and aryl boronates.

The present protocol is a sustainable approach that exploits bench stable arylazo sulfoxones, easily prepared from anilines, and allow the wavelength selective generation of aryl radicals and aryl cations. Herein, we report the application of arylazo sulfoxides and heterocycles and unactivated arenes without the need of additives. Herein, we report the application of arylazo sulfoxides and heterocycles and unactivated arenes without the need of additives.14,15

At the beginning of our studies, several reaction conditions were evaluated in order to determine the ideal setup for the photocatalyst-free borylation of arylazo sulfoxones (Table 1). Initially, a solution of arylazo sulfoxone 1f, bis(pina-colato)diboron [B(pin)2, 2a], with NaI and TMDAM as additives in acetonitrile was stirred at room temperature. No product formation was observed in the absence of light (Table 1, entry 1) nor when exposing the solution to daylight (entry 2). Only traces of the arylic B(pin) 3f were obtained using 12 W LEDs for 12 hours (entry 3). However, 3f was isolated in 59% yield using high power 24 W blue LEDs (entry 4). Also, the H150 blue Kessil lamp (34 W) was tested for irradiation, increasing the yield up to 79% (entry 6). Reactions without NaI and TMDAM showed that there is no need for additives to form the aryl boronate 3f in 56% yield, when using high power blue LEDs (entry 5). The yield was further improved to 78% by using a blue 34 W Kessil lamp (entry 7). Other polar solvents like methanol and an acetonitrile/water mixture (9:1) gave no improvement on the yield (entries 8 and 9). The best results were obtained in acetonitrile using 34 W blue light lamp for irradiation (entry 7).

Table 1 Reaction Optimization for the Photocatalyst-Free Aryl Borylation

<table>
<thead>
<tr>
<th>Entry</th>
<th>Additive</th>
<th>Light source</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NaI/TMDAM</td>
<td>in the dark</td>
<td>–</td>
</tr>
<tr>
<td>2</td>
<td>NaI/TMDAM</td>
<td>daylight</td>
<td>–</td>
</tr>
<tr>
<td>3</td>
<td>NaI/TMDAM</td>
<td>blue LEDs 12 W</td>
<td>traces</td>
</tr>
<tr>
<td>4</td>
<td>NaI/TMDAM</td>
<td>blue LEDs 24 W</td>
<td>59</td>
</tr>
<tr>
<td>5</td>
<td>–</td>
<td>blue LEDs 24 W</td>
<td>56</td>
</tr>
<tr>
<td>6</td>
<td>NaI/TMDAM</td>
<td>Kessil lamp 34 W</td>
<td>79</td>
</tr>
<tr>
<td>7</td>
<td>–</td>
<td>Kessil lamp 34 W</td>
<td>78</td>
</tr>
<tr>
<td>8b</td>
<td>–</td>
<td>Kessil lamp 34 W</td>
<td>59</td>
</tr>
<tr>
<td>9c,d</td>
<td>–</td>
<td>Kessil lamp 34 W</td>
<td>61</td>
</tr>
</tbody>
</table>

a	Reaction conditions: 1f (0.1 mmol), 2a (0.2 mmol), NaI (50 mol%), TMDAM (1 equiv), MeCN, r.t., 12 h, yield after purification by column chromatography.
b	Reaction was carried out in MeOH.
c	Reaction was carried out in MeCN/H2O (9:1).
d	Yield, determined via 1H NMR spectroscopy using dimethyl sulfoxide as internal standard.

Based on the optimised conditions, the substrate scope was examined using different arylazo sulfoxones and borylating agents (Scheme 2). We were pleased to see that the photoinduced aryl borylation tolerates the presence of halides (3b–e), electron-donating (3f–g), and electron-withdrawing substituents (3h–o) on the aromatic moiety of the arylazo sulfoxones. In all cases, moderate to good yields were achieved (up to 78%). In addition, substrates containing potentially light-reactive substituents such as aryl ketone (3h) and biaryl (3i) were also appropriate radical precursors to give the resulting product under the described reaction conditions. Gratifyingly, arylazo sulfoxones bearing a bromide and iodide as substituent underwent also borylation (3d and 3e), without cleavage of the carbon–halogen bond.

Next, different borylating agents were studied. The results showed that compared to B2pin2 (2a), bis(neopentyl glycolato)diboron (2b), and bis(hexylene glycolato)diboron (2c) gave slightly lower yields for the respective products (3p (64%) and 3q (56%). The borylation of 4-chlorophenylazo sulfoxone using bis(catecholato)diboron (2d) was also feasible.

We thus extended our investigation to the synthesis of thioethers, the visible light-mediated thiolation of arylazo sulfoxones was approached in the presence of disulfides as the thiolating reagent (Scheme 3). The scope was evaluated by employing various arylazo sulfoxones bearing halides, cyano, nitro, pentafluorosulfide, and keto groups (5a–j). The products were obtained in moderate to good yields. Additionally, different ortho- and meta-substituents were tolerated (5k–m). Diethyl sulfide (4b) and diphenyl sulfide (4c) were also successful in the photocatalyst-free thioether synthesis leading to 5n and 5o in 50% and 46% yield, respectively.

The proposed mechanism for the synthesis of aryl sulfoxides and boronates is depicted in Scheme 4. Irradiation of 1 with blue light (λ = 420 nm) leads to the excited ‘nmt’-state 1*(path a). Subsequent homolytic cleavage of the S–N bond (path b) affords the aryl radical 6 and methanesulfonyl radical 7. Such radicals are trapped by the diboron/disulfide (Y–Y) reagent 2 to give products 3 or 5 and the boron/sulfide radical (Y+) 8 (path c and f). The combination between aryl and X-radicals to form 3 or 5 is also possible (path d). Hydrogen atom abstraction by the generated radicals from the solvent to give arenes 9 and sulfonic acid (10) could also take place as a secondary path (path g). Finally, the recombination of the aryl 6 and methanesulfonyl radical 7 leads to a second possible by-product sulfone 12 (path e, see SI).

In summary, we have developed an efficient, green, photoinduced aryl borylation and aryl thioether formation protocol with arylazo sulfoxones as aryl radical precursors.
These stable and easy to handle aryl diazonium salt derivatives show a high photoreactivity under blue light irradiation. The scope of the borylation reaction includes both, different aryl derivatives and different diboron esters, providing products in moderate to good yields. In addition, this simple approach could also be transferred to the aryl sulfide synthesis with disulfides.

Unless otherwise noted, all reagents were obtained from commercial suppliers. Organic solvents were purified from by solvent purification system MBraun SPS-5 and stored over molecular sieves under argon. Diazonium salts were synthesised by following a known procedure and purified by recrystallisation from acetone/Et₂O. For irradiation of the reaction mixtures, different light sources were used: a) blue LED and purified by recrystallisation from acetone/Et₂O. For irradiation of Diazonium salts were synthesised by following a known procedure16 system MBraun SPS-5 and stored over molecular sieves under argon.

Substrate scope of the photoinduced synthesis of aryl sulfides. Reagents and conditions: 1 (0.2 mmol), 2 (0.2 mmol), MeCN, r.t., H150 Kessil lamp (blue light 34 W), 12 h. Yields after purification by column chromatography. * Yield determined via 1H NMR using dimethyl sulfone as internal standard, confirmed by MS (EI); m/z ~ 230 (87).

Scheme 3 Substrate scope of the photoinduced synthesis of aryl sulfides. Reagents and conditions: 1 (0.2 mmol), 4 (0.4 mmol), MeCN, r.t., H150 Kessil lamp (blue light 34 W), 12 h. Yields after purification by column chromatography.

Scheme 4 Proposed mechanism for the PC-free photoinduced borylation and aryl sulfide formation via arylazo sulfones as stable radical precursors.

strips (12W, 24 W) and b) H150 Kessil lamp (34 W, λ = 420 nm). The reaction was cooled using a small ventilator, placed at 3 cm from the reaction vessels. A shield covered with aluminum foil was placed in front of the reaction setup to protect eyes from light irradiation. Solvents for chromatography were technical grade and distilled prior to use. TLC was carried out on Merck aluminum support plates Silica gel 60 F254. Visualisation was achieved under a UV mineral light or cer-molybdato phosphoric acid (CAM). Column chromatography was performed using silica gel Merck 60 (0.2–0.063 mm). 1H NMR spectra were recorded on Varian 400 MHz and 600 MHz.

Scheme 2 Substrate scope of the photoinduced aryl borylation. Reagents and conditions: 1 (0.1 mmol), 2 (0.2 mmol), MeCN, r.t., H150 Kessil lamp (blue light 34 W), 12 h; yields after purification by column chromatography. * Yield determined via 1H NMR using dimethyl sulfone as internal standard, confirmed by MS (EI); m/z ~ 230 (87).
1-(Methylsulfonyl)-2-(4-Bromophenyl)diazene (1d)

Reaction of 4-bromobenzzenediazonium tetrafluoroborate (1.00 g, 3.69 mmol) and MeSO2Na (377 mg, 3.69 mmol, 1.00 equiv) in CH2Cl2 (12.3 mL, 0.30 M) gave 1d (533 mg, 2.03 mmol, 55%) after recrystallisation from cold CH2Cl2/n-hexane as a yellow solid.

1H NMR (600 MHz, CDCl3): δ = 7.83 (d, J = 8.7 Hz, 2 H), 7.73 (d, J = 8.7 Hz, 2 H), 3.22 (s, 3 H).

The NMR data were in accordance with the literature.14b

1-(Methylsulfonyl)-2-(4-Iodophenyl)diazene (1e)

Reaction of 4-iodobenzzenediazonium tetrafluoroborate (497 mg, 1.56 mmol) and MeSO2Na (160 mg, 1.56 mmol, 1.00 equiv) in CH2Cl2 (5.20 mL, 0.30 M) gave 1e (212 mg, 6.85·10−1 mmol, 44%) after recrystallisation from cold CH2Cl2/n-hexane) as an orange solid; mp 132.0–132.4 °C (dec.).

IR (KBr, neat): 3037, 2928, 2074, 1474, 1316, 1139, 952, 887, 830 cm−1.

1H NMR (600 MHz, CDCl3): δ = 8.15 (d, J = 8.5 Hz, 2 H), 7.90 (d, J = 8.5 Hz, 2 H), 3.26 (s, 3 H).

The NMR data were in accordance with the literature.14b

1-(Methylsulfonyl)-2-(4-

The NMR data were in accordance with the literature.14b
1-(Methylsulfonyl)-2-(1,1′-biphenyl)diazene (I)

Reaction of 1,1′-biphenylidiazotetrafluoroborate (338 mg, 1.43 mmol) and MeSO$_2$Na (146 mg, 1.43 mmol, 1.00 equiv) in CH$_2$Cl$_2$ (5.00 mL, 0.30 M) gave I (223 mg, 8.58·10$^{-1}$ mmol, 60%) after recrystallisation from cold CH$_2$Cl$_2$/hexane as an orange solid; mp 115.5–115.9 °C (dec.).

IR (KBr, neat): 3016, 2988, 2935, 2901, 1717, 1334, 1272, 1148, 1102 cm$^{-1}$.

1H NMR (600 MHz, CDCl$_3$):
δ = 8.03 (d, $J = 8.5$ Hz, 2 H), 7.81 (d, $J = 8.5$ Hz, 2 H), 7.67 (d, $J = 7.5$ Hz, 2 H), 7.51 (t, $J = 7.6$ Hz, 2 H), 7.45 (t, $J = 7.3$ Hz, 1 H), 3.24 (s, 3 H).

13C NMR (151 MHz, CDCl$_3$):
δ = 148.8, 148.0, 139.0, 129.1, 128.8, 128.2, 127.3, 125.2, 34.8.

MS (EI): m/z (%) = 181 (22), 153 (100).

1-(Methylsulfonyl)-2-(4-ethoxycarbonylphenyl)diazene (1j)

Reaction of 4-ethoxycarbonylbenzenediazonium tetrafluoroborate (391 mg, 1.56 mmol) and MeSO$_2$Na (160 mg, 1.56 mmol, 1.00 equiv) in CH$_2$Cl$_2$ (5.30 mL, 0.30 M) gave Ij (293 mg, 1.21 mmol, 78%) after column chromatography on silica gel (eluents: 3:1 pentane/EtOAc), followed by recrystallisation from cold CH$_2$Cl$_2$/hexane as a yellow solid; mp 113.0–113.5 °C (dec.).

IR (KBr, neat): 3019, 2934, 1323, 1233, 1142, 963, 825 cm$^{-1}$.

1H NMR (600 MHz, CDCl$_3$):
δ = 8.24 (d, $J = 8.5$ Hz, 2 H), 8.00 (d, $J = 8.5$ Hz, 2 H), 3.98 (s, 3 H), 3.25 (s, 3 H).

13C NMR (151 MHz, CDCl$_3$):
δ = 165.6, 151.2, 135.5, 130.9, 124.2, 52.7, 34.8.

MS (EI): m/z (%) = 163 (90), 135 (100), 103 (37).

1-(Methylsulfonyl)-2-(α-naphthalene)diazene (1o)

Reaction of α-naphthalenediazotetrafluoroborate (315 mg, 1.30 mmol) and MeSO$_2$Na (133 mg, 1.30 mmol, 1.00 equiv) in CH$_2$Cl$_2$ (4.30 mL, 0.30 M) gave Io (286 mg, 1.22 mmol, 91%) after recrystallisation from cold CH$_2$Cl$_2$/hexane as an orange solid; mp 133.1–133.5 °C (dec.).

IR (KBr, neat): 3042, 2936, 2074, 1326, 1147, 1087, 1147, 955, 981, 851, 806, 763 cm$^{-1}$.

1H NMR (600 MHz, CDCl$_3$):
δ = 8.68 (d, $J = 8.4$ Hz, 1 H), 8.18 (t, $J = 14.9$ Hz, 1 H), 8.03–7.95 (m, 2 H), 7.73 (dd, $J = 18.1$, 10.4 Hz, 1 H), 7.64 (dt, $J = 22.0$, 7.9 Hz, 2 H), 3.34 (s, 3 H).

13C NMR (151 MHz, CDCl$_3$):
δ = 143.9, 136.3, 134.3, 131.4, 128.6, 128.4, 127.3, 125.3, 122.5, 115.1, 35.1.

MS (EI): m/z (%) = 155 (100), 143 (76), 127 (28).

1-(Methylsulfonyl)-2-(2-Cyanophenyl)diazene (1p)

Reaction of 2-cyanobenzenediazotetrafluoroborate (100 mg 4.61·10$^{-1}$ mmol) and MeSO$_2$Na (467 mg, 4.61·10$^{-1}$ mmol, 1.00 equiv) in CH$_2$Cl$_2$ (1.50 mL, 0.30 M) gave Ip (38.0 mg, 1.82·10$^{-1}$ mmol, 40%) after recrystallisation from cold CH$_2$Cl$_2$/hexane as a yellow solid; mp 112.1–112.7 °C (dec.).

IR (KBr, neat): 3455, 3149, 3098, 3036, 3010, 2926, 2852, 2633, 2491, 2399, 2231, 2089, 1899, 1870, 1440, 1674, 1500, 1485, 1421, 1334, 1273, 1209, 1151, 1039, 956, 887, 810, 773, 746, 694 cm$^{-1}$.

1H NMR (600 MHz, CDCl$_3$):
δ = 7.99–7.88 (m, 2 H), 7.85–7.78 (m, 2 H), 3.29 (s, 3 H).

13C NMR (151 MHz, CDCl$_3$):
δ = 149.1, 135.1, 134.1, 133.9, 117.2, 116.0, 115.2, 34.6.

MS (EI): m/z (%) = 102 (100), 130 (53).

Methyl 2-(Methylsulfonyl)diazonbenzoate (1q)

Reaction of 2-methoxycarbonylbenzenediazonium tetrafluoroborate (100 mg, 0.40 mmol) and MeSO$_2$Na (40.9 mg, 0.40 mmol, 1.00 equiv) in CH$_2$Cl$_2$ (1.50 mL, 0.30 M) gave Iq (60.7 mg, 2.51·10$^{-1}$ mmol, 63%) after recrystallisation from cold CH$_2$Cl$_2$/hexane as a yellow solid; mp 78.8–79.2 °C (dec.).
Photoinduced Arylboration; General Procedure
A solution of arylazo sulfone (0.10 mmol) and the respective diboron (2.00 mmol, 2.00 equiv) in degassed MeCN (2.00 mL, 0.05 M) was poured into a glass vessel, capped, and exposed to blue light (H150 Kessil lamp, 34 W, 420 nm) at r.t. for 12 h. After the completion of the reaction (detected by TLC), the solvent was removed in vacuo (1 mtorr) for 1 h. The crude product was purified via column chromatography on silica gel with a mixture of toluene/EtOAc (30:1) as a colourless oil.

IR (KBr, neat): 3086, 3019, 2935, 2875, 2652, 2323, 2165, 2113, 1996, 1931, 1827, 1755, 1605, 1525, 1330, 1154, 1084, 1002, 957, 918, 869, 817, 790, 728, 667 cm−1.

The NMR data were in accordance with the literature.17

4,4,5,5-Tetramethyl-2-phenyl-1,3,2-dioxaborolane (3a)
Reaction of 3-(nitrobenzenediazonium tetrafluoroborate (100 mg, 0.42 mmol) and MeSO4Na (42.4 mg, 0.42 mmol, 1.00 equiv) in CH2Cl2 (1.50 mL, 0.30 M) gave 1a (38.6 mg, 1.82·10−1 mmol, 40%) after recrystallisation from cold CH2Cl2/n-hexane as a yellow solid; mp 120.9–121.4 °C (dec.).

IR (KBr, neat): 3436, 3101, 3019, 2940, 2848, 2638, 2281, 2163, 2096, 1969, 1931, 1827, 1755, 1605, 1525, 1330, 1154, 1084, 1002, 957, 918, 869, 817, 790, 728, 667 cm−1.

The NMR data were in accordance with the literature.17

1-(Methylsulfonyl)-2-(3-nitrophenyl)diazene (1r)
Reaction of 3-nitrobenzenediazonium tetrafluoroborate (100 mg, 0.20 mmol, 2.00 equiv) in MeCN (2.00 mL, 0.05 M) gave 1r (38.6 mg, 1.82·10−1 mmol, 40%) after recrystallisation from cold CH2Cl2/n-hexane as a white solid; mp 120.9–121.4 °C (dec.).

IR (KBr, neat): 3019, 2940, 2848, 2638, 2281, 2163, 2096, 1969, 1931, 1827, 1755, 1605, 1525, 1330, 1154, 1084, 1002, 957, 918, 869, 817, 790, 728, 667 cm−1.

The NMR data were in accordance with the literature.17

2-(4-Chlorophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3c)
Reaction of 1c (21.9 mg, 0.10 mmol) and 2a (50.8 mg, 0.20 mmol, 2.00 equiv) in MeCN (2.00 mL, 0.05 M) gave 3c (16.4 mg, 6.88·10−2 mmol, 69%) after purification by column chromatography on silica gel with a mixture of toluene/EtOAc (30:1) as a colourless oil.

IR (KBr, neat): 3019, 2940, 2848, 2638, 2281, 2163, 2096, 1969, 1931, 1827, 1755, 1605, 1525, 1330, 1154, 1084, 1002, 957, 918, 869, 817, 790, 728, 667 cm−1.
The NMR data were in accordance with the literature.10a

2-(4-Nitrophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3j)

Reaction of 2-(4-Nitrophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3j) with a mixture of toluene/EtOAc (30:1) as a yellowish solid.

The NMR data were in accordance with the literature.18

Ethyl 4-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)benzoate (3m)

Reaction of 1m (25.6 mg, 0.10 mmol) and 2a (50.8 mg, 0.20 mmol, 2.00 equiv) in MeCN (2.00 mL, 0.05 M) gave 3m (15.2 mg, 5.50·10⁻² mmol, 55%) after purification via column chromatography on silica gel with a mixture of toluene/EtOAc (30:1) as a colourless oil.

The NMR data were in accordance with the literature.10a

Methyl 4-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)benzoate (3n)

Reaction of 1n (24.2 mg, 0.10 mmol) and 2a (50.8 mg, 0.20 mmol, 2.00 equiv) in MeCN (2.00 mL, 0.05 M) gave 3n (14.8 mg, 5.68·10⁻² mmol, 57%) after purification by column chromatography on silica gel with a mixture of toluene/EtOAc (30:1) as a colourless oil.

The NMR data were in accordance with the literature.17

Photoinduced Synthesis of Aryl Thioethers 5; General Procedure

A solution of arylazole sulfone 1 (0.20 mmol) and the respective disulfide 4 (0.40 mmol, 2.00 equiv) in degassed MeCN (2.00 mL, 0.1 M) was poured into a glass vessel, capped, and exposed to blue light (H150 Kessil lamp, 34 W, 420 nm) at r.t. for 12 h. After the completion
of the reaction (detected by TLC), the solvent was removed in vacuo, and the crude product was purified by column chromatography on silica gel.

Thioanisole (5a)

Reaction of 1a (36.8 mg, 0.20 mmol) and dimethyl disulfide (4a; 37.7 mg, 0.40 mmol, 2.00 equiv) in MeCN (2.00 mL, 0.1 M) gave 5a (12.8 mg, 10.3·10⁻² mmol, 51%) after purification by column chromatography on silica gel with pentane as a colourless oil.

\[\text{H NMR (600 MHz, CDCl}_3\): } \delta = 7.36–7.22 \text{ (m, 4 H), 7.14 (t, } J = 5.6, 1.9 \text{ Hz, 1 H), 2.49 (s, 3 H).} \]

The NMR data were in accordance with the literature.²²

4-Methoxythioanisole (5f)

Reaction of 4-Methoxythioanisole (5f) (16.7 mg, 0.20 mmol) and 4a (37.7 mg, 0.40 mmol, 2.00 equiv) in MeCN (2.00 mL, 0.1 M) gave 5f (30.3 mg, 14.9·10⁻² mmol, 66%) after purification by column chromatography on silica gel with a mixture of pentane/Et₂O (50:1) as a yellow solid.

\[\text{H NMR (600 MHz, CDCl}_3\): } \delta = 7.58–7.51 \text{ (m, 2 H), 7.32–7.20 (m, 2 H), 2.50 (s, 3 H).} \]

The NMR data were in accordance with the literature.²³

4-Chlorothioanisole (5b)

Reaction of 4-Chlorothioanisole (5b) (36.8 mg, 0.20 mmol) and 4a (37.7 mg, 0.40 mmol, 2.00 equiv) in MeCN (2.00 mL, 0.1 M) gave 5b (21.9 mg, 1.38·10⁻¹ mmol, 69%) after purification by column chromatography on silica gel with pentane as a colourless oil.

\[\text{H NMR (600 MHz, CDCl}_3\): } \delta = 7.28–7.21 \text{ (m, 2 H), 7.21–7.14 (m, 2 H), 2.46 (s, 3 H).} \]

The NMR data were in accordance with the literature.²⁰

1H NMR (600 MHz, CDCl₃):

\[\delta = 7.59 (dd, J = 7.8, 1.5 Hz, 1 H), 7.50–7.44 (m, 1 H), 7.29–7.27 (m, 1 H), 7.17–7.13 (m, 1 H), 3.93–3.90 (m, 3 H), 2.46 (s, 3 H). \]

The NMR data were in accordance with the literature.²⁴

4-Acetylthioanisole (5j)

Reaction of 4-Acetylthioanisole (5j) (16.2 mg, 10.5·10⁻² mmol, 74%) after purification by column chromatography on silica gel with pentane as a yellow solid.

\[\text{H NMR (600 MHz, CDCl}_3\): } \delta = 7.90–7.83 \text{ (m, 2 H), 7.31–7.20 (m, 2 H), 2.56 (s, 3 H), 2.51 (s, 3 H).} \]

The NMR data were in accordance with the literature.²⁵

4-(Methylthio)benzonitrile (5g)

Reaction of 11 (41.8 mg, 0.20 mmol) and 4a (37.7 mg, 0.40 mmol, 2.00 equiv) in MeCN (2.00 mL, 0.1 M) gave 5g (19.3 mg, 13.1·10⁻² mmol, 66%) after purification by column chromatography on silica gel with a mixture of pentane/Et₂O (50:1) as a yellow solid.

\[\text{H NMR (600 MHz, CDCl}_3\): } \delta = 7.58–7.51 \text{ (m, 2 H), 7.32–7.20 (m, 2 H), 2.50 (s, 3 H).} \]

The NMR data were in accordance with the literature.²³

4-Nitrothioanisole (5h)

Reaction of 1q (48.5 mg, 0.20 mmol) and 4a (37.7 mg, 0.40 mmol, 2.00 equiv) in MeCN (2.00 mL, 0.1 M) gave 5h (24.6 mg, 13.4·10⁻² mmol, 58%) after purification by column chromatography on silica gel with pentane as a yellow solid.

\[\text{H NMR (600 MHz, CDCl}_3\): } \delta = 7.90–7.83 \text{ (m, 2 H), 7.31–7.20 (m, 2 H), 2.56 (s, 3 H), 2.51 (s, 3 H).} \]

The NMR data were in accordance with the literature.²⁴

Pentafluoro[4-(methylthio)phenyl]sulfane (5i)

Reaction of 1q (48.5 mg, 0.20 mmol) and 4a (37.7 mg, 0.40 mmol, 2.00 equiv) in MeCN (2.00 mL, 0.1 M) gave 5i (37.6 MHz, 80:1) as a yellow solid.

\[\text{H NMR (376 MHz, CDCl}_3\): } \delta = 87.57–81.95 (m), 63.35 (d, } J = 150.2 Hz. \]

The NMR data were in accordance with the literature.²²

Methyl 2-(Methylthio)benzoate (5k)

Reaction of 1q (48.5 mg, 0.20 mmol) and 4a (37.7 mg, 0.40 mmol, 2.00 equiv) in MeCN (2.00 mL, 0.1 M) gave 5k (18.3 mg, 10.1·10⁻² mmol, 50%) after purification by column chromatography on silica gel with a mixture of pentane/Et₂O (50:1) as a colourless solid.

\[\text{H NMR (600 MHz, CDCl}_3\): } \delta = 7.79 (dd, } J = 7.8, 1.5 Hz, 1 H), 7.50–7.44 (m, 1 H), 7.29–7.27 (m, 1 H), 7.17–7.13 (m, 1 H), 3.93–3.90 (m, 3 H), 2.46 (s, 3 H). \]

The NMR data were in accordance with the literature.²¹

2-(Methylthio)benzonitrile (5l)

Reaction of 1p (41.8 mg, 0.20 mmol) and 4a (37.7 mg, 0.40 mmol, 2.00 equiv) in MeCN (2.00 mL, 0.1 M) gave 5l (14.5 mg, 14.5·10⁻² mmol, 72%) after purification by column chromatography on silica gel with a mixture of pentane/Et₂O (90:1) as a colourless solid.

\[\text{H NMR (600 MHz, CDCl}_3\): } \delta = 7.59 (dd, } J = 7.7, 1.3 Hz, 1 H), 7.53–7.50 (m, 1 H), 7.32 (d, } J = 8.1 Hz, 1 H), 7.23–7.20 (m, 1 H), 2.56 (s, 3 H). \]

The NMR data were in accordance with the literature.²²
The NMR data were in accordance with the literature.21

Ethyl Phenyl Sulfide (5n)

Reaction of 1a (36.8 mg, 0.20 mmol) and diethyl disulfide (4b; 49 mg, 0.40 mmol, 2.00 equiv) in MeCN (2.00 mL, 0.1 M) gave 5n (17.2 mg, 9.23·10⁻² mmol, 46%) after purification by column chromatography on silica gel with pentane as a colourless oil.

Diphenyl Sulfide (5o)

Reaction of 1a (36.8 mg, 0.20 mmol) and diphenyl disulfide (4c; 87.3 mg, 0.40 mmol, 2.00 equiv) in MeCN (2.00 mL, 0.1 M) gave 5o (17.2 mg, 9.23·10⁻² mmol, 46%) after purification by column chromatography on silica gel with pentane as a colourless oil.

Supporting Information

Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1611648.

References

1H NMR (600 MHz, CDCl₃): δ = 8.05 (t, J = 1.9 Hz, 1 H), 7.96 (dd, J = 5.8, 1.9, 0.7 Hz, 1 H), 7.55–7.51 (m, 1 H), 7.43 (t, J = 8.0 Hz, 1 H), 2.56 (s, 3 H).

The NMR data were in accordance with the literature.21

3-Nitrothioanisole (5m)

Reaction of 1s (33.8 mg, 0.20 mmol) and 4a (37.7 mg, 0.40 mmol, 2.00 equiv) in MeCN (2.00 mL, 0.1 M) gave 5m (18.2 mg, 10.8·10⁻² mmol, 54%) after purification by column chromatography on silica gel with a mixture of pentane/Et₂O as a yellow solid.

1H NMR (600 MHz, CDCl₃): δ = 8.05 (t, J = 1.9 Hz, 1 H), 7.96 (dd, J = 5.8, 1.9, 0.7 Hz, 1 H), 7.55–7.51 (m, 1 H), 7.43 (t, J = 8.0 Hz, 1 H), 2.56 (s, 3 H).

The NMR data were in accordance with the literature.21
(c) Mfuh, A. M.; Schneider, B. D.; Cruces, W.; Larinov, O. V. Nat. Protoc. 2017, 12, 604.
(15) During the preparation of this manuscript a similar protocol for the borylation reaction appeared: Xu, Y.; Yang, X.; Fang, H. J. Org. Chem. 2018, 83, 12831.