Synthesis 2019; 51(10): 2039-2057
DOI: 10.1055/s-0037-1611576
review
© Georg Thieme Verlag Stuttgart · New York

Contemporary Synthetic Strategies towards Secosteroids, abeo-Steroids, and Related Triterpenes

Florian Noack
,
Robert C. Heinze
,
Institut für Chemie und Biochemie, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany   Email: philipp.heretsch@fu-berlin.de
› Author Affiliations
Funding by Deutsche Forschungsgemeinschaft (DFG) is gratefully acknowledged (grants HE 7133/5-1 and HE 7133/7-1).
Further Information

Publication History

Received: 12 February 2019

Accepted after revision: 01 March 2019

Publication Date:
16 April 2019 (online)


Abstract

Steroids have long been sought after as synthetic targets. Their rearranged counterparts, though, have only recently received more attention, when isolation and biological testing programs revealed several molecular entities that were both structurally intriguing as well as biologically relevant. This review will highlight contemporary synthetic approaches towards the growing class of seco- and abeo-steroids and some related triterpenoid natural products.

1 Introduction

2 Cyclocitrinol

2.1 Li’s Synthesis of Cyclocitrinol

2.2 Gui’s Synthesis of Cyclocitrinol

3 Strophasterol

3.1 Heretsch’s Synthesis of Strophasterol A

3.2 Kuwahara’s Synthesis of Strophasterols A and B

4 Pleurocin A/Matsutakone and Pleurocin B

4.1 Heretsch’s Synthesis of Pleurocin A/Matsutakone and Pleurocin B

5 Aplysiasecosterol A

5.1 Li’s Synthesis of Aplysiasecosterol A

6 Glaucogenins C and D

6.1 Tian’s Syntheses of 5,6-Dihydro-glaucogenin C and Glaucogenin D

7 Physalin B

7.1 Sodeoka’s Synthesis of the DFGH Ring System of Physalin B

8 Limonin

8.1 Hirama’s Synthesis of (±)-Limonin

9 Schiglautone A

9.1 Ding’s Synthesis of (±)-atrop-Schiglautone A

10 Conclusion

 
  • References

  • 1 Fieser LF, Fieser M. Steroids . Reinhold Publishing Corporation; New York: 1959
  • 2 Duecker FL, Reuß F, Heretsch P. Org. Biomol. Chem. 2019; 17: 1624
  • 3 Amagata T, Amagata A, Tenney K, Valeriote FA, Lobokovsky E, Clardy J, Crews P. Org. Lett. 2003; 5: 4393
  • 4 El Sheikh S, Meier zu Greffen A, Lex J, Neudörfl J.-M, Schmalz H.-G. Synlett 2007; 1881
    • 5a Plummer CW, Wei CS, Yozwiak CE, Soheili A, Smithback SO, Leighton JL. J. Am. Chem. Soc. 2014; 136: 9878
    • 5b Plummer CW, Wei CS, Yozwiak CE, Soheili A, Smithback SO, Leighton JL. J. Am. Chem. Soc. 2015; 137: 13722
  • 6 Liu J, Wu J, Fan JH, Yan X, Mei G, Li CC. J. Am. Chem. Soc. 2018; 140: 5365
  • 7 Wang Y, Ju W, Tian H, Tian W, Gui J. J. Am. Chem. Soc. 2018; 140: 9413
  • 8 do Rosário Marinho AM, Rodrigues-Filho E, Ferreira AG, Santos LS. J. Braz. Chem. Soc. 2005; 16: 1342
  • 9 Angeles AR, Waters SP, Danishefsky SJ. J. Am. Chem. Soc. 2008; 130: 13765
    • 10a Mei G, Yuan H, Qiao C, Chen W, Li CC. Angew. Chem. Int. Ed. 2015; 54: 1754
    • 10b Mei G, Yuan H, Gu Y, Chen W, Chung LW, Li CC. Angew. Chem. Int. Ed. 2014; 53: 11051
  • 11 Kobayashi T, Tsuruta H. Synthesis 1980; 492
  • 12 Deluca HF, Tadi BP, Plum LA, Clagett-Dame M. US Patent 20060111321, 2006
  • 13 Terasawa T, Okada T. Tetrahedron 1986; 42: 537
  • 14 Confalone PN, Kulesha ID, Uskokovic MR. J. Org. Chem. 1981; 46: 1030
  • 15 Weber F, Brückner R. Org. Lett. 2014; 16: 6428
  • 16 Wu J, Tokuyama S, Nagai K, Yusuda N, Noguchi K, Matsumoto T, Hirai H, Kawagishi H. Angew. Chem. Int. Ed. 2012; 51: 10820
  • 17 Heinze RC, Lentz D, Heretsch P. Angew. Chem. Int. Ed. 2016; 55: 11656
  • 18 Sato S, Fukuda Y, Ogura Y, Kwon E, Kuwahara S. Angew. Chem. Int. Ed. 2017; 56: 10911
  • 19 McMorris TC, Patil PA. J. Org. Chem. 1993; 58: 2338
  • 20 Fukuyama T, Lin SC, Li L. J. Am. Chem. Soc. 1990; 112: 7050
    • 21a Nozaki K, Oshima K, Uchimoto K. J. Am. Chem. Soc. 1987; 109: 2547
    • 21b Ollivier C, Renaud P. Chem. Rev. 2001; 101: 3415
  • 22 Giroux S, Corey EJ. Org. Lett. 2008; 10: 801
  • 23 Epifanio Rde A, Camargo W, Pinto AC. Tetrahedron Lett. 1988; 29: 6403
  • 24 Boger DL, Mathvink RJ. J. Org. Chem. 1992; 57: 1429
  • 25 Back TG, Hu N.-X. Tetrahedron Lett. 1992; 33: 5685
  • 26 Zhao Z.-Z, Chen H.-P, Wu B, Zhang L, Li Z.-H, Feng T, Liu J.-K. J. Org. Chem. 2017; 82: 7974
  • 27 Kikuchi T, Horii Y, Maekawa Y, Masumoto Y, In Y, Tomoo K, Sato H, Yamano A, Yamada T, Tanaka R. J. Org. Chem. 2017; 82: 10611
  • 28 Heinze RC, Heretsch P. J. Am. Chem. Soc. 2019; 141: 1222
  • 29 Nicolaou KC, Zhong Y.-L, Baran PS. J. Am. Chem. Soc. 2000; 122: 7596
  • 30 Arseniyadis S, Quilez del Moral J, Brondi Alves R, Potier P, Toupet L. Tetrahedron: Asymmetry 1998; 9: 2871
  • 31 Sawamura M, Kawaguchi Y, Nakamura E. Synlett 1997; 801
  • 32 Kawamura A, Kita M, Kigoshi H. Angew. Chem. Int. Ed. 2015; 54: 7073
  • 33 Lu Z, Zhang X, Guo Z, Chen Y, Mu T, Li A. J. Am. Chem. Soc. 2018; 140: 9211
  • 34 Smith DM, Pulling ME, Norton JR. J. Am. Chem. Soc. 2007; 129: 770
  • 35 Hartung J, Pulling ME, Smith DM, Yang DX, Norton JR. Tetrahedron 2008; 64: 11822
  • 36 Leggans EK, Barker TJ, Duncan KK, Boger DL. Org. Lett. 2012; 14: 1428
  • 37 Yeung Y.-Y, Chein R.-J, Corey EJ. J. Am. Chem. Soc. 2007; 129: 10346
  • 38 Trost BM, Coppola BP. J. Am. Chem. Soc. 1982; 104: 6879
  • 39 Lu Z, Li H, Bian M, Li A. J. Am. Chem. Soc. 2015; 137: 13764
  • 40 Loh T.-P, Cao G.-Q, Pei J. Tetrahedron 1998; 39: 1453
  • 41 Hara S, Yamamoto Y, Fujita A, Suzuki A. Synlett 1994; 639
  • 42 Harrison ST, Montagnon T, Gray DL. F, Nicolaou KC. Angew. Chem. Int. Ed. 2002; 41: 996
  • 43 Asaba T, Katoh Y, Urabe D, Inoue M. Angew. Chem. Int. Ed. 2015; 54: 14457
  • 44 Ohyoshi T, Tano H, Akemoto K, Kigoshi H. Tetrahedron Lett. 2017; 58: 3327
  • 45 Myers AG, Yang BH, Chen H, McKinstry L, Kopecky DJ, Gleason JL. J. Am. Chem. Soc. 1997; 119: 6496
  • 46 Burns M, Essafi S, Bame JR, Bull SP, Webster MP, Balieu S, Dale JW, Butts CP, Harvey JN, Aggarwal VK. Nature 2014; 513: 183
  • 47 Lo JC, Yabe Y, Baran PS. J. Am. Chem. Soc. 2014; 136: 1304
  • 48 Crossley SW. M, Barabé F, Shenvi RA. J. Am. Chem. Soc. 2014; 136: 16788
  • 49 Nakagawa T, Hayashi K, Mitsuhashi H. Tetrahedron Lett. 1982; 23: 757
  • 50 Gui J, Wang D, Tian W. Angew. Chem. Int. Ed. 2011; 50: 7093
  • 51 Gui J, Tian H, Tian W. Org. Lett. 2013; 15: 4802
  • 52 Li W, Fuchs PL. Org. Lett. 2003; 5: 2849
  • 53 Wasserman HH, Murray RW. Singlet Oxygen . Academic Press; New York: 1979
  • 54 Schreiber SL, Sammakia T, Hulin B, Schulte G. J. Am. Chem. Soc. 1986; 108: 2106
  • 55 Ananchenko GS, Fischer H. J. Polym. Sci., Part A: Polym. Chem. 2001; 39: 3604
  • 56 Nakagawa T, Hayashi K, Mitsuhashi H. Chem. Pharm. Bull. 1983; 31: 870
  • 57 Matsuura T, Kawai M. Tetrahedron Lett. 1969; 10: 1765
  • 58 Ohkubo M, Hirai G, Sodeoka M. Angew. Chem. Int. Ed. 2009; 48: 3862
  • 59 Sha CK, Huang S.-J. Tetrahedron Lett. 1995; 36: 6927
  • 60 Bernays AJ. Justus Liebigs Ann. Chem. 1841; 40: 317
  • 61 Arigoni D, Barton DH. R, Corey EJ, Jeger O, Caglioti L, Dev S, Ferrini PG, Glazier ER, Melera A, Pradhan SK, Schaffner K, Sternhell S, Templeton JF, Tobinaga S. Experientia 1960; 16: 41
  • 62 Yamashita S, Naruko A, Nakazawa Y, Zhao L, Hayashi Y, Hirama M. Angew. Chem. Int. Ed. 2015; 54: 8538
  • 63 Snider BB, Patricia JJ, Kates SA. J. Org. Chem. 1988; 53: 2137
  • 64 Wade PA, Bereznak JF. J. Org. Chem. 1987; 52: 2973
  • 65 Boto A, Freire R, Hernández R, Suárez E. J. Org. Chem. 1997; 62: 2975
  • 66 Feng FY, Sun JX, Li X, Yu HY, Li SM, Ruan HL. Org. Lett. 2011; 13: 1502
  • 67 Werner B, Kalesse M. Org. Lett. 2017; 19: 1524
  • 68 Le Chapelain C. Org. Biomol. Chem. 2017; 15: 6242
  • 69 Ma B, Zhao Y, He C, Ding H. Angew. Chem. Int. Ed. 2018; 57: 15567
  • 70 Barrarero AF, Cuerva JM, Herrador MM, Valdivia V. J. Org. Chem. 2001; 66: 4074
  • 71 Gansäuer A, Pierobon M, Bluhm H. Angew. Chem. Int. Ed. 1998; 37: 101
  • 72 Dauben WG, Michno DM. J. Org. Chem. 1977; 42: 682