Recent Advances in the Synthetic Chemistry of Bicyclo[1.1.1]pentane

J. Kanazawa*
M. Uchiyama*
Japan Tobacco Inc., Japan
RIKEN, Japan
The University of Tokyo, Japan

Manganese-Catalyzed Direct Olefination via an Acceptorless Dehydrogenative Coupling of Methyl Heteroarenes with Primary Alcohols

M. K. Barman
S. Waiba
B. Maji*
Indian Institute of Science Education and Research Kolkata, India
Recent Applications of α-Carbonyl Sulfoxonium Ylides in Rhodium- and Iridium-Catalyzed C–H Functionalizations

X. Wu
S. Sun
J.-T. Yu
J. Cheng*
Changzhou University,
P. R. of China

Synthesis of Functional Carbo-benzenes with Functional Properties: The C2 Tether Key

K. Cocq
C. Barthes
A. Rives
V. Maraval*
R. Chauvin*
CNRS, LCC (Laboratoire de Chimie de Coordination), France
Université de Toulouse, France

Structural Identification of Products from the Chloromethylation of Salicylaldehyde

E. Kadwa
H. B. Friedrich
M. D. Bala*
University of KwaZulu-Natal,
South Africa
Direct Asymmetric \(\alpha\)-Hydroxylation of Cyclic \(\alpha\)-Branched Ketones through Enol Catalysis

G. A. Shevchenko*
G. Pupo*
B. List*

Max-Planck-Institut für Kohlenforschung, Germany

\[
\text{R} + \text{PhN} \rightarrow \text{R} - \text{OH}
\]

13 examples up to 98.5:1.5 er

Synthesis and Optoelectronic Properties of Iptycene–Naphthazarin Dyes

C. Dengiz
Y.-C. M. Wu
T. M. Swager*

Massachusetts Institute of Technology, USA

\[
\text{R} = \text{H} \quad \text{R} = \text{Me} \quad \text{up to 53% yield over 2 steps} \\
\times 0.10-0.12)
\]

Synthesis of Conformationally Locked and C-Linked Analogues of Imidazole-Based Ketene Dithioacetal Fungicides

J. Gagnepain
S. Jeanmart
D. Bonvalot
O. Jacob
C. Lamberth*

Syngenta Crop Protection AG, Switzerland

[This document was downloaded for personal use only. Unauthorized distribution is strictly prohibited.]
One-Pot Approach to Pyrido-4-phenanthridinones by Palladium-Catalyzed Annulation of 4-Quinolones with 2-Bromobenzyl Bromides

T. Arasakumar
S. Shyamsivappan
S. Gopalan
A. Ata*
P. S. Mohan*
Bharathiar University, India
The University of Winnipeg, Canada

![Chemical structure](image)

- **R** = 6-F, 6-Cl, 6-OMe, 6-methyl, 6-ethoxy, 6-CF₃, 6-OCF₃, 6,7-difluoro, 6,7-dichloro, 6,7-dimethoxy
- **R¹** = H, OMe, F, Cl
- (1) **Benzylation**
- (2) **C–H arylation**

* Readily available substrates
* Sequential C–N/C–C bond formation
* Mild conditions

Enantioselective Synthesis of 1- and 4-Hydroxytetrahydrocarbazoles through Asymmetric Transfer Hydrogenation

Ö. Dilek
S. Patir
E. Ertürk*
TÜBİTAK Marmara Research Center, Turkey

![Chemical structure](image)

- **R¹** = H, OCF₃
- **R²** = H, Bn, Ts
- **R** = H, Ts, MOM
- **R¹** = H, OCF₃
- **R²** = H, Bn, Ts
- **X** = Cl, Br, I
- **R¹** = Alkyl
- **X** = Cl, Br, I

Cesium Carbonate-Promoted P-Alkylation of Phosphinecarboxamides

X.-G. Chen
Q.-L. Wu
F. Hou
X.-C. Wang
Z.-J. Quan*
Northwest Normal University, P. R. of China
Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, P. R. of China

![Chemical structure](image)

- **R¹** = H, CH₃, OCH₃, Cl
- **R²** = Alkyl
- **X** = Cl, Br, I

- 17 examples
- up to 85% yield

- Air- and moisture-stable starting materials
- Mild reaction conditions
Synthesis of the Deacetoxytubuvaline Fragment of Pretubulysin and its Lipophilic Analogues for Enhanced Permeability in Cancer Cell Lines

R. B. Reddy
P. Dudhe
V. Chelvam*
Indian Institute of Technology Indore, India

Regio- and Stereoselective Synthesis of Spirooxindoles via Mizoroki–Heck Coupling of Aryl Iodides

A. Adeyemi
A. Wetzel
J. Bergman
J. Brånalt
M. Larhed*
Uppsala University, Sweden

One-Pot Three-Component Synthesis of 2,4,5-Triaryl-1H-imidazoles in the Presence of a Molecular Sieve Supported Titanium Catalyst under Mild Basic Conditions

Á. Magyar
Z. Hell*
Budapest University of Technology and Economics, Hungary
Toluene and its Derivatives as Atom-Efficient Benzylating Agents for Secondary Amines

D. Schönbauer
F. Lukas
M. Schnürch*
TU Wien, Austria

Toluene and its derivatives as atom-efficient benzylating agents for secondary amines. 20 examples, up to 80% yield.

- 10 mol% Ni(OTf)₂
- 10 mol% PPh₃
- 2.0 equiv NaHCO₃
- 2.0 equiv C₃F₇I
- 140 °C, 24 h

C–Te Cross-Coupling of Diaryl Ditellurides with Arylboronic Acids by Using Copper(I) Thiophene-2-carboxylate under Mild Conditions

S. Koguchi*
Y. Shibuya
Y. Igarashi
H. Takemura
Tokai University, Japan

C–Te cross-coupling of diaryl ditellurides with arylboronic acids by using copper(I) thiophene-2-carboxylate under mild conditions. This reaction proceeds at room temperature. No base or acid is required. General-purpose solvents such as THF and methylene chloride can be used. Tellurium coupling proceeds selectively.

- 18 samples
- Up to 94% yield

Synthesis of Naphthoic Acids as Potential Anticancer Agents

L. M. Deck*
J. A. Greenberg
L. J. Whalen
D. L. Vander Jagt
R. E. Royer
University of New Mexico, USA

Synthesis of naphthoic acids as potential anticancer agents. 9 naphthoic acids from 3 precursors, ~34% over 3 steps.
Copper-Catalyzed C(sp³)–H Azidation of 1,3-Dihydro-2H-indol-2-ones Under Mild Conditions

W.-H. Bao
L.-H. Gao
W.-W. Ying
W.-T. Chen
G.-P. Chen
W.-T. Wei
Y.-Y. Liu
Q. Li
Ningbo University, P. R. of China
Huahua University, P. R. of China

Copper-Catalyzed C(sp³)–H Azidation of 1,3-Dihydro-2H-indol-2-ones Under Mild Conditions

R₁ = H, OMe, Me, Cl, Br
R₂ = H, Me, Ph, 4-Tol
R₃ = H, Me, Bn, Ph, Boc

DDQ-Mediated Cross-Dehydrogenative-Coupling Reaction of Secondary Amines with Dialkyl Phosphonates

M.-X. Cheng
J.-W. Lei
C.-X. Xie
Henan University of Chinese Medicine, P. R. of China

DDQ-Mediated Cross-Dehydrogenative-Coupling Reaction of Secondary Amines with Dialkyl Phosphonates

H₂N
R₁ \(\rightarrow \) \(\text{DDQ} \)
R₂ \(+ \) \(\text{HP(OR₃)₂} \)
R₁ \(\rightarrow \)
R₂ \(\text{C–P bond formation} \)

25 examples
up to 92% yield