Synlett 2019; 30(02): 189-192
DOI: 10.1055/s-0037-1611361
letter
© Georg Thieme Verlag Stuttgart · New York

Highly Selective One-Pot Synthesis of Polysubstituted Isoflavanes using Styryl Ethers and Electron-Withdrawing ortho-Quinone Methides Generated In Situ

,
Mami Kishimoto
,
Naoya Ohtsuka
,
Yoshinori Iwama
,
Hiroki Wada
,
Graduate School of Environment and Information Sciences, Yokohama National University, Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan   Email: honda-kiyoshi-rb@ynu.ac.jp   Email: hoshino-yujiro-hy@ynu.ac.jp
,
Kiyoshi Honda*
Graduate School of Environment and Information Sciences, Yokohama National University, Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan   Email: honda-kiyoshi-rb@ynu.ac.jp   Email: hoshino-yujiro-hy@ynu.ac.jp
› Author Affiliations
Further Information

Publication History

Received: 13 September 2018

Accepted after revision: 25 October 2018

Publication Date:
17 December 2018 (online)


Abstract

A highly selective one-pot synthesis of polysubstituted isoflavanes has been developed. The reaction proceeds through the cycloaddition of methyl styryl ethers, derived from phenylacetaldehyde dimethyl acetals under acidic conditions, with electron-withdrawing ortho-quinone methides generated in situ. When phenylacetaldehyde dimethyl acetals were reacted with salicylaldehydes, the reaction proceeded smoothly to afford the corresponding isoflavanes stereoselectively in high yields and with excellent regioselectivities. The present reaction provides versatile access to functionalized isoflavanes, and constitutes a useful tool for the synthesis of biologically active molecules.

Supporting Information

 
  • References and Notes

    • 1a Cinzia L, Campo FM, Lisa PA, Osmany C.-R, Marquez HI, Luca R. J. Agric. Food Chem. 2010; 58: 2209
    • 1b Grosvenor PW, Gray DO. J. Nat. Prod. 1998; 61: 99
    • 1c Wenjun P, Dongmei W, Dan Z. Sci. Rep. 2015; 5: 13914
    • 1d Kırmızıbekmez H, Uysal GB, Masullo M, Demirci F, Bağcı Y, Kan Y, Piacente S. Fitoterapia 2015; 103: 289
    • 1e Sun X, He C, Yang X, Guo L, Li X. Biochem. Syst. Ecol. 2015; 61: 516
    • 1f Miyasea T, Sano M, Yoshino K, Nonaka K. Phytochemistry 1999; 52: 311
    • 1g Shakeel U, Inamullah F, Fatima I, Khan S, Kazmi MH, Malik A, Tareen RB, Abbas T. Chem. Nat. Compd. 2016; 52: 611
    • 1h Bonde MR, Millar RL, Incham JL. Phytochemistry 1973; 12: 2957

      For representative syntheses of isoflavones with electron-donating substituents, see:
    • 2a Tilley AJ, Zanatta SD, Qin CX, Kim I.-K, Seok Y.-M, Stewart A, Woodmand OL, Williams SJ. Bioorg. Med. Chem. 2012; 20: 2353
    • 2b Gharpure SJ, Sathiyanarayanan AM, Jonnalagadda P. Tetrahedron Lett. 2008; 49: 2974
    • 2c Feng Z.-G, Bai W.-J, Pettus TR. R. Angew. Chem. Int. Ed. 2015; 54: 1864
    • 2d Nakamura K, Ohmori K, Suzuki K. Chem. Commun. 2015; 7012
    • 2e Takashima Y, Kaneko Y, Kobayashi Y. Tetrahedron 2010; 66: 197
    • 2f Zhang J, Zhang S, Yang H, Zhou D, Yu X, Wang W, Xie H. Tetrahedron Lett. 2018; 59: 2407
    • 3a Contil C, Desideria N, Orsil N, Sestiliz I, Stein ML. Eur. J. Med. Chem. 1990; 25: 725
    • 3b Burali C, Desideri N, Stein ML, Conti C, Orsi N. Eur. J. Med. Chem. 1987; 22: 119
    • 3c Desideri N, Conti C, Sestili I, Tomao P, Stein ML, Orsi N. Antiviral Chem. Chemother. 1992; 3: 195
    • 3d Conti C, Genovese D, Santoro R, Stein ML, Orsi N, Fiore L. Antimicrob. Agents Chemother. 1990; 34: 460
    • 4a Bai W.-J, David JG, Feng Z.-G, Weaver MG, Wu K.-L, Pettus TR. R. Acc. Chem. Res. 2014; 47: 3655
    • 4b Pathak TP, Sigman MS. J. Org. Chem. 2011; 76: 9210
  • 5 Jaworski AA, Scheidt KA. J. Org. Chem. 2016; 81: 10145
    • 6a Tanaka K, Sukekawa M, Shigematsu Y, Hoshino Y, Honda K. Tetrahedron 2017; 73: 6456
    • 6b Tanaka K, Hoshino Y, Honda K. Heterocycles 2017; 95: 474
    • 6c Tanaka K, Hoshino Y, Honda K. Tetrahedron Lett. 2016; 57: 2448
    • 6d Tanaka K, Shigematsu Y, Sukekawa M, Hoshino Y, Honda K. Tetrahedron Lett. 2016; 57: 5914
    • 6e Miyazaki H, Honda Y, Honda K, Inoue S. Tetrahedron Lett. 2000; 41: 2643
    • 6f Inoue S, Wang P, Nagao M, Hoshino Y, Honda K. Synlett 2005; 469
    • 6g Shrestha KS, Honda K, Asami M, Inoue S. Bull. Chem. Soc. Jpn. 1999; 72: 73
    • 6h Tanaka K, Sukekawa M, Hoshino Y, Honda K. Chem. Lett. 2018; 47: 440
    • 6i Tanaka K, Sukekawa M, Kishimoto M, Hoshino Y, Honda K. Heterocycles DOI: 10.3987/COM-18-S(F)5.
    • 6j Tanaka K, Kishimoto M, Hoshino Y, Honda K. Tetrahedron Lett. 2018; 59: 1841
  • 7 Miyazaki H, Honda K, Asami M, Inoue S. J. Org. Chem. 1999; 64: 9507
  • 8 Synthesis of Isoflavane 6; General Procedure: Salicylaldehyde 1 (0.25 mmol), phenylacetaldehyde dimethyl acetal 8 (0.75 mmol) and trimethyl orthoformate (0.50 mmol) were dissolved in anhydrous toluene (2.5 mL) under nitrogen. Trifluoromethanesulfonic acid (20 mol%) was added into the reaction mixture. After being stirred at 40 °C for 1 h, the reaction was quenched with 5% aq. NaHCO3. The organic layer was separated and the aqueous layer was extracted with ethyl acetate. The combined organic layer was dried over MgSO4, and filtered. The filtrate was concentrated in vacuo. The resulting residue was purified by column chromatography on silica gel (hexane/ethyl acetate, 50:1) to afford isoflavan 6. Characterization data for 2,4-dimethoxy-6-nitro-3-(p-tolyl)phenylchromane (6a): Yield: 0.1368 g (84%); yellow solid; dr 30:1. 1H NMR (500 MHz, CDCl3): δ = 8.29 (dd, J = 2.7, 0.8 Hz, 1 H), 8.16 (dd, J = 8.7, 3.0 Hz, 1 H), 7.10 (d, J = 1.3 Hz, 4 H), 7.00 (d, J = 1.3 Hz, 1 H), 5.50–5.47 (m, 1 H), 4.59 (d, J = 4.7 Hz, 1 H), 3.55 (s, 3 H), 3.48 (t, J = 5.0 Hz, 1 H), 3.38 (s, 3 H), 2.31 (s, 3 H); 13C NMR (126 MHz, CDCl3): δ = 157.5, 141.6, 137.1, 132.6, 129.1, 128.9, 125.4, 124.4, 123.8, 117.3, 103.3, 74.4, 57.1, 56.6, 45.1, 21.0; IR (ATR): 2916, 1516, 1338, 1107, 1061, 1030, 918, 753, 616 cm–1; HRMS (ESI+): m/z [M + H]+ calcd for C18H20NO5: 330.1336; found: 330.1342.
    • 9a Full data for the X-ray crystal structure analysis can be found in the Supporting Information.
    • 9b Farrugia LJ. J. Appl. Crystallogr. 2012; 45: 849
  • 10 See for instance: Blaskol G, Cordell GA. Tetrahedron 1989; 45: 6361
    • 11a Selenski C, Pettus TR. R. J. Org. Chem. 2004; 69: 9196
    • 11b Inoue T, Inoue S, Sato K. Chem. Lett. 1989; 18: 653
    • 11c Jones RM, Selenski C, Pettus TR. R. J. Org. Chem. 2002; 67: 6911
    • 11d Marsini MA, Huang Y, Lindsey CC, Wu K.-L, Pettus TR. R. Org. Lett. 2008; 10: 1477