Nickel-Catalyzed Enantioselective Reductive Diarylation

The authors report a reductive diarylation of alkenes by using a nickel-catalyzed domino process employing two aryl electrophiles. This represents the first report of metal-catalyzed reductive coupling for the synthesis of oxindole scaffolds.

Proposed mechanisms (key intermediates):

- Nickel(II) complex
- oxidative addition
- reductive elimination

Selected examples:

<table>
<thead>
<tr>
<th>Example</th>
<th>Yield (%)</th>
<th>ee (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>81% yield, 96% ee</td>
<td>51% yield, 96% ee</td>
<td>62% yield, 98% ee</td>
</tr>
<tr>
<td>45% yield, 94% ee</td>
<td>51% yield, 94% ee</td>
<td>62% yield, 97% ee</td>
</tr>
</tbody>
</table>

Comment: Following optimization of the reaction conditions, a broad substrate scope that included aryl bromides and alkenes was observed. An example of an azaoxindole was also demonstrated. The authors consider two possible pathways: One features two oxidative addition steps. The key step of the second pathway is a transmetalation between two nickel(II) species.

Synfacts Contributors: Mark Lautens, Christian Dank

SYNFACS Contributors: Mark Lautens, Christian Dank
Synfacts 2018, 14(12), 1255 Published online: 19.11.2018
DOI: 10.1055/s-0037-1611312; Reg-No.: L13618SF

2018 © THIEME STUTTGART • NEW YORK