Hydrosilylation of Alkenes Catalyzed by Platinum on N-Doped Graphene

Significance: Single-atom platinum catalyst supported on N-doped graphene (Pt-ISA/NG) was prepared by heating a mixture of an EDTA–Pt complex and Na₂CO₃ at 850 °C for one hour, followed by removal of the Na₂CO₃ with dilute HCl (eq. 1). Pt-ISA/NG catalyzed the hydrosilylation of alkenes with triethoxysilane to give the corresponding silylated alkanes in ≥99% conversion and ≥99% selectivity (eq. 2).

Comment: The authors have previously reported the preparation of the EDTA–Pt complex (Nano Res. 2018, 11, 3088). In the hydrosilylation of octan-1-one with triethoxysilane, Pt-ISA/NG was reused four times without significant loss of its catalytic activity. TEM, EDX, HAADF-STEM, and EXAFS studies on the recovered Pt-ISA/NG indicated that the structural and electronic integrity of Pt-ISA/NG was maintained under the reaction conditions.

SYNFACTS Contributors: Yasuhiro Uozumi, Ryoko Niimi

DOI: 10.1055/s-0037-1611180; **Reg-No.:** Y16218SF