Asymmetric Decarboxylative Allylic Alkylation of Acyclic Enol Carbonates

Significance: The authors present the first enantioselective palladium-catalyzed decarboxylative allylic alkylation of fully substituted non-cyclic enol carbonates. The reaction delivers the linear α-quaternary ketones in excellent yields. The phosphinooxazolidine ligand controls the stereoselectivity of the reaction regardless of the Z/E geometry of the enolate starting material.

Comment: This work outlines a general method to access linear α-quaternary ketones with high enantioselectivity. A dynamic kinetic resolution of the two Z/E geometries of the enolate starting material is postulated under optimal reaction conditions, which comprise the use of an electron-deficient phosphinooxazolidine ligand.

Selected examples:

- 97% yield, 91% ee
- 99% yield, 76% ee
- 90% yield, 66% ee
- 97% yield, 91% ee
- 99% yield, 92% ee
- 99% yield, 90% ee
- 99% yield, 92% ee
- 99% yield, 92% ee
- 99% yield, 70% ee
- 99% yield, 90% ee
- 99% yield, 90% ee

Category: Metal-Catalyzed Asymmetric Synthesis and Stereoselective Reactions

Key words: palladium catalysis, decarboxylative allylic alkylation, enol carbonates