Synthesis of a Phosphoinositide 3-Kinase (PI3K) β Inhibitor

Significance: The target molecule K is a phosphoinositide 3-kinase (PI3K) β inhibitor that is of interest for the treatment of various cancers. The restricted axis of rotation around a carbon–nitrogen bond of rac-K generated atropisomeric compounds (P)-K and (M)-K with significantly different pharmacological and pharmacokinetic profiles.

Comment: The metabolism of the inactive atropisomer (M)-K is the result of the action of the enzyme aldehyde oxidase (AO) whereas the active atropisomer (P)-K has lower affinity for AO resulting in better metabolic stability. The atropisomers ($\Delta E_{rot} = 35 \text{ kcal/mol}$) were separated by preparative chiral SFC chromatography.

Synthesis of a Phosphoinositide 3-Kinase (PI3K) β Inhibitor

![Chemical structure and synthesis steps](image)