Synthesis 2019; 51(11): 2339-2350
DOI: 10.1055/s-0037-1610875
paper
© Georg Thieme Verlag Stuttgart · New York

Highly Efficient, Catalyst-Free, Diastereoselective, Diversity-Oriented Synthesis of Dihydrocoumarin–Pyrrolidine–Spirooxindoles Bearing Three Contiguous Stereocenters

Xiong Zuo
a   Guizhou Medicine Edible Plant Resources Application Development Engineering Laboratory, Guizhou University, Guiyang, Guizhou 550025, P. R. of China   Email: xlliu1@gzu.edu.cn
,
Shuang Chen
a   Guizhou Medicine Edible Plant Resources Application Development Engineering Laboratory, Guizhou University, Guiyang, Guizhou 550025, P. R. of China   Email: xlliu1@gzu.edu.cn
,
Sheng-Wen Xu
a   Guizhou Medicine Edible Plant Resources Application Development Engineering Laboratory, Guizhou University, Guiyang, Guizhou 550025, P. R. of China   Email: xlliu1@gzu.edu.cn
,
Shun-Qin Chang
a   Guizhou Medicine Edible Plant Resources Application Development Engineering Laboratory, Guizhou University, Guiyang, Guizhou 550025, P. R. of China   Email: xlliu1@gzu.edu.cn
,
a   Guizhou Medicine Edible Plant Resources Application Development Engineering Laboratory, Guizhou University, Guiyang, Guizhou 550025, P. R. of China   Email: xlliu1@gzu.edu.cn
,
Ying Zhou
b   College of Pharmaceutical Sciences, Guizhou University of Chinese Medicine, Guiyang, Guizhou 550025, P. R. of China
,
Wei-Cheng Yuan
c   Key Laboratory for Asymmetric Synthesis & Chirotechnology of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, P. R. of China
› Author Affiliations
We are grateful for the financial support from the National Natural Science Foundation of China (No. 81660576, No. 81560563, No. 81760625) and the Projects of Guizhou Province (Qian Ke He Zi [2016]5623, [2018]5670, [2017]5609 and Qian Jiao Yan He JG Zi [2016]06).
Further Information

Publication History

Received: 21 December 2018

Accepted after revision: 08 March 2019

Publication Date:
03 April 2019 (online)


Abstract

A new methodology has been developed for the highly efficient diastereoselective construction of dihydrocoumarin–pyrrolidine–spirooxindole collections via a domino Michael/annulation reaction of 3-isothiocyanato oxindoles and coumarins under catalyst-free conditions. The resulting biologically important molecules bearing three pharmacophores and three contiguous stereocenters were obtained in up to 92% yield and >20:1 dr. It is noteworthy that utilization of a carboxylic acid activation/decarboxylation strategy represents an efficient approach for the domino Michael/annulation reaction of the chemically inert coumarin moiety. This protocol could expand candidate libraries, that will benefit the requirement for new bioactive molecules.

Supporting Information

 
  • References

    • 1a O’Connor CJ, Beckmann HS. G, Spring DR. Chem. Soc. Rev. 2012; 41: 4444
    • 1b Burke MD, Schreiber SL. Angew. Chem. Int. Ed. 2004; 43: 46
    • 1c Bon RS, Waldmann H. Acc. Chem. Res. 2010; 43: 1103
    • 1d Wetzel S, Bon RS, Kumar K, Waldmann H. Angew. Chem. Int. Ed. 2011; 50: 10800
    • 1e Sharma I, Tan DS. Nat. Chem. 2013; 5: 157
    • 1f Xu P.-W, Liu J.-K, Shen L, Cao Z.-Y, Zhao X.-L, Yan J, Zhou J. Nat. Commun. 2017; 8: 1619
    • 1g Ma C, Jiang F, Sheng F.-T, Jiao Y, Mei G.-J, Shi F. Angew. Chem. Int. Ed. 2019; 58: 3014
    • 1h Ma C, Zhou J.-Y, Zhang Y.-Z, Jiao Y, Mei G.-J, Shi F. Chem. Asian J. 2018; 13: 2549
    • 2a Hirao M, Posakony J, Nelson M, Hruby H, Jung MF, Simon JA, Bedalov A. J. Biol. Chem. 2003; 278: 52773
    • 2b Bedalov A, Gatbonton T, Irvine WP, Gottschling DE, Simon JA. Proc. Natl. Acad. Sci. U.S.A. 2001; 98: 15113
    • 2c Khafagy MM, El-Wahab AH. F. A, Eid FA, El-Agrody AM. Farmaco 2002; 57: 715
    • 2d Drabikova K, Perecko T, Nosal R, Rackova L, Ambrozova G, Lojek A, Smidrkal J, Harmatha J, Jancinova V. Neuroendocrinol. Lett. 2010; 31: 73
    • 2e Zhang K, Ding W, Sun J, Zhang B, Lu F, Lai R, Zou Y, Yedid G. Biochimie 2014; 107: 203
    • 3a Katavic PL, Venables DA, Rali T, Carroll AR. J. Nat. Prod. 2007; 70: 872
    • 3b Onaka T. Tetrahedron Lett. 1971; 4395
    • 3c Tanaka T, Iijima I. Tetrahedron 1973; 29: 1285
    • 3d Johns SR, Lamberton JA, Sioumis AA. Chem. Commun. 1968; 1324
    • 3e Johns SR, Lamberton JA, Sioumis AA, Wunderlich JA. Chem. Commun. 1968; 290
    • 3f Kiyoi T, Reid M, Francis S, Davies K, Laats S, McArthur D, Easson A.-M, Kiyoi Y, Tarver G, Caulfield W, Gibson K, Wishart G, Morrison AJ, Adam JM, Ray P. Tetrahedron Lett. 2011; 52: 3413
    • 4a Kuang Y, Liu X, Chang L, Wang M, Lin L, Feng X. Org. Lett. 2011; 13: 3814
    • 4b Hong BC, Kotame P, Lee GH. Org. Lett. 2011; 13: 5758
    • 4c Engl OD, Fritz SP, Käslin A, Wennemers H. Org. Lett. 2014; 16: 5454
    • 4d Li X.-H, Fang P, Chen D, Hou X.-L. Org. Chem. Front. 2014; 1: 969
    • 4e Tian L, Xu G.-Q, Li Y.-H, Liang Y.-M, Xu P.-F. Chem. Commun. 2014; 50: 2428
    • 4f Shao Z, Xu L, Wang L, Wei H, Xiao J. Org. Biomol. Chem. 2014; 12: 2185
    • 4g Lee A, Scheidt KA. Chem. Commun. 2015; 51: 3407
    • 4h Zhang S.-Y, Lv M, Yin S.-J, Li N.-K, Zhang J.-Q, Wang X.-W. Adv. Synth. Catal. 2016; 358: 143
    • 4i Wang Y, Pan J, Jiang R, Wang Y, Zhou Z. Adv. Synth. Catal. 2016; 358: 195
    • 4j Jin H, Cho SM, Hwang G.-S, Ryu DH. Adv. Synth. Catal. 2017; 359: 163
    • 5a Hu H, Liu Y, Guo J, Lin L, Xu Y, Liu X, Feng X. Chem. Commun. 2015; 51: 3835
    • 5b Yu X.-Y, Chen J.-R, Wei Q, Cheng H.-G, Liu Z.-C, Xiao W.-J. Chem. Eur. J. 2016; 22: 6774
    • 5c Zhou J, Wang M.-L, Gao X, Jiang G.-F, Zhou Y.-G. Chem. Commun. 2017; 53: 3531
    • 5d Jin JH, Li X.-Y, Luo X, Fossey JS, Deng W.-P. J. Org. Chem. 2017; 82: 5424
    • 5e Chen X, Song R, Liu Y, Ooi CY, Jin Z, Zhu T, Wang H, Hao L, Chi YR. Org. Lett. 2017; 19: 5892
    • 5f Zhang Z.-P, Xie K.-X, Yang C, Li M, Li X. J. Org. Chem. 2018; 83: 364
    • 6a Willis NJ, Bray CD. Chem. Eur. J. 2012; 18: 9160
    • 6b Saha S, Alamsetti KS, Schneider C. Chem. Commun. 2015; 51: 1461
    • 6c Wu Z, Wang X, Li F, Wu J, Wang J. Org. Lett. 2015; 17: 3588
    • 6d Zhao Y.-L, Lou Q.-X, Wang L.-S, Hu W.-H, Zhao J.-L. Angew. Chem. Int. Ed. 2017; 56: 338
    • 6e Li G.-T, Li Z.-K, Gu Q, You S.-L. Org. Lett. 2017; 19: 1318
    • 6f Chandrasekhar DB, Tsay S.-C, Pradhan TK, Hwu JR. J. Org. Chem. 2017; 82: 5524
    • 6g Lee Y, Seo SW, Kim S.-G. Adv. Synth. Catal. 2011; 353: 2671
    • 6h Zhao Y.-L, Lou Q.-X, Wang L.-S, Hu W.-H, Zhao J.-L. Angew. Chem. Int. Ed. 2017; 56: 338
    • 7a Peng S, Wang L, Guo H, Sun S, Wang J. Org. Biomol. Chem. 2012; 10: 2537
    • 7b Nakamura S, Toda A, Sano M, Hatanaka T, Funahashi Y. Adv. Synth. Catal. 2016; 358: 1029
    • 7c Ghandi M, Taheri A, Abbasi A. Tetrahedron 2010; 66: 6744
    • 7d Gonzalo B, Carmen Muñoz M, José RP, Amparo S.-M. Adv. Synth. Catal. 2013; 355: 1071
    • 7e Lee YT, Das U, Chen YR, Lee CJ, Chen CH, Yang MC, Lina W. Adv. Synth. Catal. 2013; 355: 3154

      For selected examples, see:
    • 8a Cheng D, Ishihara Y, Tan B, Barbas CF. III. ACS Catal. 2014; 4: 743
    • 8b Singh GS, Desta ZY. Chem. Rev. 2012; 112: 6104
    • 8c Hong L, Wang R. Adv. Synth. Catal. 2013; 355: 1023
    • 8d Xu PW, Liu JK, Shen L, Cao Z.-Y, Zhao X.-L, Yan J, Zhou J. Nat. Commun. 2017; 8: 1619
    • 8e Han WY, Zhao JQ, Zuo J, Xu XY, Zhang XM, Yuan WC. Adv. Synth. Catal. 2015; 357: 3007
    • 8f Zhou F, Liu YL, Zhou J. Adv. Synth. Catal. 2010; 352: 1381
    • 8g Liu Y.-L, Wang X, Zhao Y.-L, Zhu F, Zeng X.-P, Chen L, Wang C.-H, Zhao X.-L, Zhou J. Angew. Chem. Int. Ed. 2013; 52: 13735
    • 8h Mei G, Shi F. Chem. Commun. 2018; 54: 6607
    • 8i Cao Z.-Y, Zhou F, Zhou J. Acc. Chem. Res. 2018; 51: 1443
    • 8j Jiang F, Zhao D, Yang X, Yuan FR, Mei GJ, Shi F. ACS Catal. 2017; 7: 6984
    • 8k Zhou LJ, Zhang YC, Jiang F, He G, Yan J, Lu H, Zhang S, Shi F. Adv. Synth. Catal. 2016; 358: 3069
    • 8l Yu B, Zheng YC, Shi XJ, Qi PP, Liu HM. Anti-Cancer Agents Med. Chem. 2016; 16: 1315
    • 8m Vetica F, Figueiredo RM, Orsini M, Tofani D, Gasperi T. Synthesis 2015; 47: 2139

      For selected examples, see:
    • 9a Trost BM, Cramer N, Silverman SM. J. Am. Chem. Soc. 2007; 129: 12396
    • 9b Tomita D, Yamatsugu K, Kanai M, Shibasaki M. J. Am. Chem. Soc. 2009; 131: 6946
    • 9c Antonchick AP, Gerding-Reimers C, Catarinella M, Schürmann M, Preut H, Ziegler S, Rauh D, Waldmann H. Nat. Chem. 2010; 2: 735
    • 9d Bergonzini G, Melchiorre P. Angew. Chem. Int. Ed. 2012; 51: 971
    • 9e Guo C, Song J, Huang J.-Z, Chen P.-H, Luo S.-W, Gong L.-Z. Angew. Chem. Int. Ed. 2012; 51: 1046
    • 9f Overman LE, Rosen MD. Angew. Chem. Int. Ed. 2000; 39: 4596
    • 9g Bella M, Kobbelgaard S, Jørgensen KA. J. Am. Chem. Soc. 2005; 127: 3670
    • 9h Trost BM, Brennan MK. Org. Lett. 2006; 8: 2027
    • 9i Crosignani S, Page P, Missotten M, Colovray V, Cleva C, Arrighi J.-F, Atherall J, Macritchie J, Martin T, Humbert Y, Gaudet M, Pupowicz D, Maio M, Chollet A. J. Med. Chem. 2008; 51: 2227
    • 9j Zhu Y, Zhou J, Jin S, Dong H, Guo J, Bai X, Wang Q, Bu Z. Chem. Commun. 2017; 53: 11201
  • 10 For a review, see: Pearson WH. In Studies in Natural Products Chemistry, Vol. 1. Atta-ur-Rahman Elsevier; New York: 1998: 323

    • For representative examples, see:
    • 11a Chen W.-B, Wu Z.-J, Hu J, Cun L.-F, Zhang X.-M, Yuan W.-C. Org. Lett. 2011; 13: 2472
    • 11b Kato S, Yoshino T, Shibasaki M, Kanai M, Matsunaga S. Angew. Chem. Int. Ed. 2012; 51: 7007
    • 11c Kato S, Kanai M, Matsunaga S. Chem. Asian J. 2013; 8: 1768
    • 11d Liu X.-L, Han W.-Y, Zhang X.-M, Yuan W.-C. Org. Lett. 2013; 15: 1246
    • 11e Han W.-Y, Li S.-W, Wu Z.-J, Zhang X.-M, Yuan W.-C. Chem. Eur. J. 2013; 19: 5551
    • 11f Cao Y.-M, Shen F.-F, Zhang F.-T, Wang R. Chem. Eur. J. 2013; 19: 1184
    • 11g Wu H, Zhang L.-L, Tian Z.-Q, Huang Y.-D, Wang Y.-M. Chem. Eur. J. 2013; 19: 1747
    • 11h Du D, Jiang Y, Xu Q, Shi M. Adv. Synth. Catal. 2013; 355: 2249
    • 11i Jiang Y, Pei C.-K, Du D, Li X.-G, He Y.-N, Xu Q, Shi M. Eur. J. Org. Chem. 2013; 7895
    • 11j Chen Q, Liang J.-Y, Wang S.-L, Wang D, Wang R. Chem. Commun. 2013; 49: 1657
    • 11k Tan F, Lu L.-Q, Yang Q.-Q, Guo W, Bian Q, Chen J.-R, Xiao W.-J. Chem. Eur. J. 2014; 20: 3415
    • 11l Tan F, Cheng H.-G, Feng B, Zou Y.-Q, Duan S.-W, Chen J.-R, Xiao W.-J. Eur. J. Org. Chem. 2013; 2071
    • 11m Chowdhury R, Kumar M, Ghosh SK. Org. Biomol. Chem. 2016; 14: 11250
    • 12a Shaikh MS, Palkar MB, Patel HM, Rane RA, Alwan WS, Shaikh MM, Shaikh IM, Hampannavar GA, Karpoormath R. RSC Adv. 2014; 4: 62308
    • 12b Ramprasad J, Nayak N, Dalimba U. Eur. J. Med. Chem. 2015; 106: 75
    • 12c Yu B, Qi P.-P, Shi X.-J, Huang R, Guo H, Zheng Y.-C, Yu D.-Q, Liu H.-M. Eur. J. Med. Chem. 2016; 117: 241
    • 12d Fershtat LL, Makhova NN. ChemMedChem 2017; 12: 622
    • 12e Huang B, Wang X, Liu X, Chen Z, Li W, Sun S, Liu H, Daelemans D, De Clercq E, Pannecouque C. Bioorg. Med. Chem. 2017; 25: 4397
    • 12f Krall J, Jensen CH, Bavo F, Falk-Petersen CB, Haugaard AS, Vogensen SB, Tian Y, Nittegaard-Nielsen M, Sigurdardóttir SB, Kehler J, Kongstad KT, Gloriam DE, Clausen RP, Harpsøe K, Wellendorph P, Frølund B. J. Med. Chem. 2017; 60: 9022
    • 13a Hu F, Chen H, Zhang M, Yu S, Xu X, Yuan W, Zhang X.-M. J. Heterocycl. Chem. 2017; 54: 2922
    • 13b Cao J, Dong S.-D, Jiang D.-L, Zhu P.-Y, Zhang H, Li R, Li Z.-Y, Wang X.-Y, Tang W.-F, Du D. J. Org. Chem. 2017; 82: 4186
    • 13c Gui H.-Z, Wei Y, Shi M. Eur. J. Org. Chem. 2018; 4905
    • 13d Shao Z, Xu L, Wang L, Wei H, Xiao J. Org. Biomol. Chem. 2014; 12: 2185
    • 13e Xu L, Shao Z, Wang L, Xiao J. Org. Lett. 2014; 16: 796
  • 14 CCDC 1874286 (5b) contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
    • 15a Mosmann T. J. Immunol. Methods 1983; 65: 55
    • 15b Alley MC, Scudiero DA, Monks A, Hursey ML, Czerwinski MJ, Fine DL, Abbott BJ, Shoemaker RH, Boyd MR. Cancer Res. 1988; 48: 589