Palladium-Catalyzed Asymmetric Allylic Alkylation Strategies for the Synthesis of Acyclic Tetrasubstituted Stereocenters

B. M. Trost*
J. E. Schultz
Stanford University, USA

Syntheses of Cyanophycin Segments for Investigations of Cell-Penetration

M. Grogg
D. Hilvert
A. K. Beck
D. Seebach *
ETH-Zürich, Switzerland
Unsymmetrical Difunctionalization of Two Different C–H Bonds in One Pot Under Transition-Metal Catalysis

M. Murai *
K. Takai *
Okayama University, Japan

Guided by Evolution: Biology-Oriented Synthesis of Bioactive Compound Classes

G. Karageorgis
H. Waldmann *
Max-Planck-Institute of Molecular Physiology, Germany

Recent Developments in Polyene Cyclizations and Their Applications in Natural Product Synthesis

A. G. M. Barrett *
T.-K. Ma
T. Mies
Imperial College London, UK
Electrochemical/Photochemical Aminations Based on Oxidative Cross-Coupling between C–H and N–H

H. Zhang
A. Lei
Wuhan University, P. R. of China

Synthesis and Reactivity of Mixed Dimethylalkynylaluminum Reagents

R. Piccardi
S. Turcaud
E. Benedetti
L. Micouin
CNRS-Université Paris Descartes, France

Syntheses of Cyclomarins – Interesting Marine Natural Products with Distinct Mode of Action towards Malaria and Tuberculosis

A. Kiefer
U. Kazmaier
Saarland University, Germany
Palladium(0)-Catalyzed Difunctionalization of 1,3-Dienes: From Racemic to Enantioselective

X. Wu
L.-Z. Gong*
University of Science and Technology of China, P. R. of China

Reaction Scheme

- **R**
- **Pd(0)**
- **R'**
- **X**
- **Nu**

X = Br, I, OTf, ONf, N, N₂+

R' = H, C, Br, O, Si

Nu = N, B, C, H, O, Si

1,2-product

1,4-product

Recent Advances in Enantioselective C–C Bond Formation via Organocobalt Species

N. Yoshikai*
Nanyang Technological University, Singapore

Organocobalt Species

- Hydroborylative cyclization
- Ring-opening allylation
- C–H activation–hydroarylation
- Allyl–aryl cross-coupling
- Intramolecular hydroacylation
- [2+2] cycloaddition–hydrovinylation

Twofold Ferrocene C–H Lithiations For One-Step Difunctionalizations

W. Erb*
F. Mongin*
Univ Rennes, France

Ferrocene Reactions
Tris(acetylacetonato) Iron(III): Recent Developments and Synthetic Applications

D. Lübken
M. Saxarra
M. Kalesse*
Leibniz Universität Hannover, Germany

α-Arylation of Amides from α-Halo Amides Using Metal-Catalyzed Cross-Coupling Reactions

E. Barde
A. Guérinot*
J. Cossy*
PSL Research University, France

7-Azaindoline Auxiliary: A Versatile Attachment Facilitating Enantioselective C–C Bond-Forming Catalysis

N. Kumagai*
M. Shibasaki*
Institute of Microbial Chemistry (BIKAKEN), Japan
Electrophilic Activation of Amides for the Preparation of Poly-substituted Pyrimidines

T. Stopka
P. Adler
G. Hagn
H. Zhang
V. Tona
N. Maulide*
University of Vienna, Austria

Formation of Complex α-Imino Esters via Multihetero-Cope Rearrangement of α-Keto Ester Derived Nitrones

S. L. Bartlett
K. M. Keiter
B. P. Zavesky
J. S. Johnson*
University of North Carolina at Chapel Hill, USA

Asymmetric Total Synthesis and Biological Evaluation of (+)-Cycloclavine

S. R. McCabe
P. Wipf*
University of Pittsburgh, USA
Chemoenzymatic Total Synthesis of (+)-Oxycodone from Phenethyl Acetate

M. A. A. Endoma-Arias
M. Makarova
H. E. Dela Paz
T. Hudlicky*
Brock University, Canada

Silicon Grignard Reagents as Nucleophiles in Transition-Metal-Catalyzed Allylic Substitution

W. Xue
M. Oestreich*
Technische Universität Berlin, Germany

Alkylpotassium-Catalyzed Benzylic C–H Alkylation of Alkylarenes with Alkenes

I. Sato
Y. Yamashita*
S. Kobayashi*
The University of Tokyo, Japan
Continuous Flow Chlorination of Alkenyl Iodides Promoted by Copper Tubing

A. Nitelet
V. Kairouz
H. Lebel*
A. B. Charette*
G. Evano*
Université libre de Bruxelles (ULB), Belgium
Université de Montréal, Canada

Rhodium-Catalyzed Cascade Annulative Coupling of 3,5-Diaryl-isoxazoles with Alkynes

T. Noguchi
Y. Nishii*
M. Miura*
Osaka University, Japan

Electrophilic Sulfoximidations of Thiols by Hypervalent Iodine Reagents

H. Wang
D. Zhang
M. Cao
C. Bolm*
RWTH Aachen University, Germany

This document was downloaded for personal use only. Unauthorized distribution is strictly prohibited.
Enantioselective Electrochemical Lactonization Using Chiral Iodoarenes as Mediators

W.-C. Gao
Z.-Y. Xiong
S. Pirhaghani
T. Wirth*
Cardiff University, UK

Electrolysis in Batch
Electrolysis in Flow

Enantiomeric Excess (ee)

- **AR-**
 - H, Me

Yield

- up to 87% yield
- up to 79% ee

Synthesis of the C1–C12 Fragment of Calyculin C

O. V. Konstantinova
A. M. P. Koskinen*
Aalto University School of Chemical Engineering, Finland

Calyculin C

10 steps
7.5% overall yield

Diastereoselectivities in Reductions of α-Alkoxy Ketones Are Not Always Correlated to Chelation-Induced Rate Acceleration

N. D. Bartolo
A. L. Hornstein
A. Y. Zhao
K. A. Woerpel*
New York University, USA

Ph

- | **Me**
 - | **OMe**

Reduction Agent

- LiAlH₄
- NaBH₄

Diastereomeric Ratio (dr)

- 96:4
- 40:60
- 63:37
- 88:12

Rate Acceleration

- no rate acceleration but high dr
- rate acceleration but low dr