Synthesis 2021; 53(15): 2594-2601
DOI: 10.1055/s-0037-1610768
feature

Organoiodine-Catalyzed Enantioselective Intramolecular Oxy­aminations of Alkenes with N-(Fluorosulfonyl)carbamate

Chisato Wata
,
Takuya Hashimoto
This work was supported by the Japan Society for the Promotion of Science (JSPS KAKENHI Grant Number JP18H04256 in Precisely Designed Catalysts with Customized Scaffolding and Grant-in-Aid for Scientific Research (B) JP19H02710), The Society of Iodine Science, Ube Industries Foundation, and Toyo Gosei Memorial Foundation.


Abstract

Organoiodine-catalyzed enantioselective intramolecular oxyaminations were realized by the use of benzyl N-(fluorosulfonyl)carbamate as the exogenous nitrogen source. The method allows access to enantioenriched lactones and oxazolines, starting from γ,δ- and δ,ε-unsaturated esters and N-allyl amides, respectively.

Supporting Information



Publication History

Received: 15 February 2021

Accepted after revision: 08 March 2021

Article published online:
15 April 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Romero RM, Wöste TH, Muñiz K. Chem. Asian J. 2014; 9: 972
  • 2 Molnár IG, Thiehoff C, Holland MC, Gilmour R. ACS Catal. 2016; 6: 7167
  • 3 Fujita M. Tetrahedron Lett. 2017; 58: 4409
  • 4 Dohi T, Kita Y. Chem. Commun. 2009; 2073
  • 5 Uyanik M, Ishihara K. J. Synth. Org. Chem., Jpn. 2012; 70: 1116
  • 6 Singh FV, Wirth T. Chem. Asian J. 2014; 9: 950
  • 7 Claraz A, Masson G. Org. Biomol. Chem. 2018; 16: 5386
  • 8 Flores A, Cots E, Berges J, Muñiz K. Adv. Synth. Catal. 2019; 361: 2
  • 9 Wang Y, Yang B, Wu ZG, Wu ZG. Synthesis 2021; 53: 889
  • 10 Fujita M, Mori K, Shimogaki M, Sugimura T. Org. Lett. 2012; 14: 1294
  • 11 Shimogaki M, Fujita M, Sugimura T. Eur. J. Org. Chem. 2013; 7128
  • 12 Mizar P, Laverny A, El-Sherbini M, Farid U, Brown M, Malmedy F, Wirth T. Chem. Eur. J. 2014; 20: 9910
  • 13 Suzuki S, Kamo T, Fukushi K, Hiramatsu T, Tokunaga E, Dohi T, Kita Y, Shibata N. Chem. Sci. 2014; 5: 2754
  • 14 Alhalib A, Kamouka S, Moran WJ. Org. Lett. 2015; 17: 1453
  • 15 Woerly EM, Banik SM, Jacobsen EN. J. Am. Chem. Soc. 2016; 138: 13858
  • 16 Banik SM, Medley JW, Jacobsen EN. Science 2016; 353: 51
  • 17 Mennie KM, Banik SM, Reichert EC, Jacobsen EN. J. Am. Chem. Soc. 2018; 140: 4797
  • 18 Haj MK, Banik SM, Jacobsen EN. Org. Lett. 2019; 21: 4919
  • 19 Sharma HA, Mennie KM, Kwan EE, Jacobsen EN. J. Am. Chem. Soc. 2020; 142: 16090
  • 20 Levin MD, Ovian JM, Read JA, Sigman MS, Jacobsen EN. J. Am. Chem. Soc. 2020; 142: 14831
  • 21 Banik SM, Medley JW, Jacobsen EN. J. Am. Chem. Soc. 2016; 138: 5000
  • 22 Wöste TH, Muñiz K. Synthesis 2016; 48: 816
  • 23 Haubenreisser S, Woste TH, Martinez C, Ishihara K, Muñiz K. Angew. Chem. Int. Ed. 2016; 55: 413
  • 24 Muñiz K, Barreiro L, Romero RM, Martínez C. J. Am. Chem. Soc. 2017; 139: 4354
  • 25 Molnar IG, Gilmour R. J. Am. Chem. Soc. 2016; 138: 5004
  • 26 Scheidt F, Schafer M, Sarie JC, Daniliuc CG, Molloy JJ, Gilmour R. Angew. Chem. Int. Ed. 2018; 57: 16431
  • 27 Sarie JC, Neufeld J, Daniliuc CG, Gilmour R. ACS Catal. 2019; 9: 7232
  • 28 Sarie JC, Thiehoff C, Neufeld J, Daniliuc CG, Gilmour R. Angew. Chem. Int. Ed. 2020; 59: 15069
  • 29 Meyer S, Häfliger J, Schäfer M, Molloy JJ, Daniliuc CG, Gilmour R. Angew. Chem. Int. Ed. 2021; 60: 6430
  • 30 Gelis C, Dumoulin A, Bekkaye M, Neuville L, Masson G. Org. Lett. 2017; 19: 278
  • 31 Wang Q, Lübcke M, Biosca M, Hedberg M, Eriksson L, Himo F, Szabó KJ. J. Am. Chem. Soc. 2020; 142: 20048
  • 32 Farid U, Wirth T. Angew. Chem. Int. Ed. 2012; 51: 3462
  • 33 Lovick HM, Michael FE. J. Am. Chem. Soc. 2010; 132: 1249
  • 34 Cochran BM, Michael FE. Org. Lett. 2008; 10: 5039
  • 35 Jeon H, Kim D, Lee JH, Song J, Lee WS, Kang DW, Kang S, Lee SB, Choi S, Hong KB. Adv. Synth. Catal. 2018; 360: 779
  • 36 Yang S, Chen Y, Yuan Z, Bu F, Jiang C, Ding Z. Org. Biomol. Chem. 2020; 18: 9873
  • 37 Romero RM, Souto JA, Muñiz K. J. Org. Chem. 2016; 81: 6118
  • 38 Deng X.-J, Liu H.-X, Zhang L.-W, Zhang G.-Y, Yu Z.-X, He W. J. Org. Chem. 2021; 86: 235
  • 39 Wata C, Hashimoto T. J. Am. Chem. Soc. 2021; 143: 1745
  • 40 Fujita M, Yoshida Y, Miyata K, Wakisaka A, Sugimura T. Angew. Chem. Int. Ed. 2010; 49: 7068
  • 41 Butt SE, Das M, Sotiropoulos J.-M, Moran WJ. J. Org. Chem. 2019; 84: 15605
  • 42 Das M, Rodríguez A, Lo PK. T, Moran WJ. Adv. Synth. Catal. 2021; 363: 1646
  • 43 Liu J, Liu Q.-Y, Fang X.-X, Liu G.-Q, Ling Y. Org. Biomol. Chem. 2018; 16: 7454
  • 44 Nakajima T, Yamashita D, Suzuki K, Nakazaki A, Suzuki T, Kobayashi S. Org. Lett. 2011; 13: 2980
  • 45 Moon NG, Harned AM. Tetrahedron Lett. 2013; 54: 2960
  • 46 Haupt JD, Berger M, Waldvogel SR. Org. Lett. 2019; 21: 242
  • 47 Gonda J, Martinková M, Zadrošová A, Šoteková M, Raschmanová J, Čonka P, Gajdošíková E, Kappe CO. Tetrahedron Lett. 2007; 48: 6912
  • 48 Nishikawa T, Asai M, Ohyabu N, Isobe M. J. Org. Chem. 1998; 63: 188
  • 49 Kc S, Basnet P, Thapa S, Shrestha B, Giri R. J. Org. Chem. 2018; 83: 2920