Synlett 2019; 30(14): 1713-1718
DOI: 10.1055/s-0037-1610717
letter
© Georg Thieme Verlag Stuttgart · New York

Single-Step Dual Functionalization: One-Pot Bromination-Cross-Dehydrogenative Esterification of Hydroxy Benzaldehydes with CCl3Br – A Comparison with Selectfluor

Further Information

Publication History

Received: 07 April 2019

Accepted after revision: 27 May 2019

Publication Date:
19 June 2019 (online)


Dedicated to Professor Ganesh P. Pandey on the occasion of his 63rd birthday.

Abstract

Bromination of phenolic compounds without directly using molecular bromine possesses much importance. In this article an IrIII/CCl3Br-assisted single-step double functionalization of hydroxy benzaldehydes is reported. It involves simultaneous esterification of the aldehyde group and bromination of the aryl ring of phenolic aldehydes in one-pot. The reaction proceeds under mild conditions in the presence of 445 nm blue LED light to obtain highly functionalized bromo hydroxy benzoates in moderate to good yields. In comparison, Selectfluor as an oxidant gives only non-bromo phenolic esters.

Supporting Information

 
  • References


    • For reviews on visible light photoredox catalysis, see:
    • 1a Schultz DM, Yoon TP. Science 2014; 343: 985
    • 1b Teegardin K, Day JI, Chan J, Weaver J. Org. Process Res. Dev. 2016; 20: 1156
    • 1c Arias-Rotondo DM, McCusker JK. Chem. Soc. Rev. 2016; 45: 5803
    • 1d Romero NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075
    • 1e Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
    • 1f Larsen CB, Wenger OS. Chem. Eur. J. 2018; 24: 2039
    • 1g Narayanam JM. R, Stephenson CR. J. Chem. Soc. Rev. 2011; 40: 102
    • 1h Douglas JJ, Sevrin MJ, Stephenson CR. J. Org. Process Res. Dev. 2016; 20: 1134
    • 1i Silvi M, Melchiorre P. Nature 2018; 554: 41

      For the importance of esters, see:
    • 2a Khan NR, Rathod VK. Process Biochem. 2015; 50: 1793
    • 2b Otera J, Nishikido J. Esterification: Methods Reactions and Applications, 2nd ed. Wiley-VCH; Weinheim: 2010
    • 2c Greene TW, Wuts PG. M. Protective Groups in Organic Synthesis . Wiley-VCH; New York: 1991

      For the syntheses of aldehyde to ester, see:
    • 3a Sarkar SD, Grimme S, Studer A. J. Am. Chem. Soc. 2010; 132: 1190
    • 3b Samanta RC, Sarkar SD, Fröhlich R, Grimme S, Studer A. Chem. Sci. 2013; 4: 2177
    • 3c Tan B, Toda N, Barbas III CF. Angew. Chem. Int. Ed. 2012; 51: 12538
    • 3d Finney EE, Ogawa KA, Boydston AJ. J. Am. Chem. Soc. 2012; 134: 12374
    • 3e Suzuki K, Yamaguchi T, Matsushita K, Iitsuka C, Miura J, Akaogi T, Ishida H. ACS Catal. 2013; 3: 1845
    • 3f Liu C, Wang J, Meng L, Deng Y, Li Y, Lei A. Angew. Chem. Int. Ed. 2011; 50: 5144
    • 3g Liu C, Tang S, Zheng L, Liu D, Zhang H, Lei A. Angew. Chem. Int. Ed. 2012; 51: 5662
    • 3h Tank R, Pathak U, Vimal M, Bhattacharyya S, Pandey LK. Green Chem. 2011; 13: 3350
    • 3i Tschaen BA, Schmink JR, Molander GA. Org. Lett. 2013; 15: 500
    • 3j Kelly CB, Mercadante MA, Wiles RJ, Leadbeater NE. Org. Lett. 2013; 15: 2222
    • 3k Zhao J, Fang H, Han J, Pan Y. Org. Lett. 2014; 16: 2530
    • 3l Krylov IB, Vil’ VA, Terent’ev AO. Beilstein J. Org. Chem. 2015; 11: 92
    • 3m Agrawal MK, Adimurthy S. Ghosh P. K. 2012; 42: 2931
    • 3n Talukdar D, Sharma K, Bharadwaj SK, Thakur AJ. Synlett 2013; 24: 963
    • 3o Gopinath R, Barkakaty B, Talukdar B, Patel BK. J. Org. Chem. 2003; 68: 2944
    • 3p Gopinath R, Patel BK. Org. Lett. 2000; 2: 577
    • 3q Zhang L, Yi H, Wanga J, Lei A. Green Chem. 2016; 18: 5122
    • 3r Hirashima S.-i, Nobuta T, Tada N, Miura T, Itoh A. Org. Lett. 2010; 12: 3645
    • 4a Das B, Venkateswarlu K, Majhi A, Siddaiah V, Reddy KR. J. Mol. Catal. A: Chem. 2007; 267: 30
    • 4b Kwak J.-H, In J.-K, Lee M.-S, Choi E.-H, Lee H, Hong JT, Yun Y.-P, Lee SJ, Seo S.-Y, Suh Y.-G, Jung J.-K. Arch. Pharm. Res. 2008; 31: 1559
    • 4c Zhao Y, Li Z, Yang C, Lin R, Xia W. Beilstein J. Org. Chem. 2014; 10: 622
    • 4d Alinezhad H, Tavakkoli SM, Salehian F. Synth. Commun. 2010; 40: 3226
    • 4e Wong S.-T, Hwang C.-C, Mou C.-Y. Appl. Catal. B. 2006; 63: 1
    • 4f Oberhauser T. J. Org. Chem. 1997; 62: 4504
    • 4g Koini EN, Avlonitis N, Calogeropoulou T. Synlett 2011; 1537
    • 4h Esumi T, Makado G, Zhai H, Shimizu Y, Mitsumoto Y, Fukuyama Y. Bioorg. Med. Chem. Lett. 2004; 14: 2621
    • 4i Greenfield AA, Butera JA, Caufield CE. Tetrahedron Lett. 2003; 44: 2729

      For the photocatalytic syntheses of aldehyde to ester, see:
    • 5a Pandey G, Koley S, Talukdar R, Sahani PK. Org. Lett. 2018; 20: 5861 ; and references cited therein
    • 5b Pinnick HW, Lajis NH. J. Org. Chem. 1978; 43: 371
    • 5c Guo Z, Xin H, Ma J, Bai M, Wang Y, Li J. Catalysts 2017; 7: 276
    • 5d Verma S, Baig RB. N, Nadagouda MN, Varma RS. Catal. Today 2018; 309: 248
    • 5e Zhang Y, Xiao Q, Bao Y, Zhang Y, Bottle S, Sarina S, Zhaorigetu B, Zhu H. J. Phys. Chem. C 2014; 118: 19062
    • 5f Verma S, Baig RB. N, Han C, Nadagouda MN, Varma RS. Green Chem. 2016; 18: 251
    • 5g Manríquez ME, Morales-Mendoza G, Alamilla J, Trejo U, Gómez R, Ortiz-Islas E. Reac. Kinet. Mech. Cat. 2017; 122: 1281
    • 5h Chen Y, Ji X, Paul B, Vadivel S. Mater. Lett. 2019; 237: 113
    • 5i Song L, Zhang S, Wu X, Tian H, Wei Q. Ind. Eng. Chem. Res. 2012; 51: 9510
    • 5j März M, Chudoba J, Kohouta M, Cibulka R. Org. Biomol. Chem. 2017; 15: 1970
    • 6a Liu M, Wang G, Xiao L, Xu X, Liu X. Xu P., Lin X. 2014; 12: 3838
    • 6b Zhao J, Fan X, Wang S, Li S, Shang S, Yang Y, Xu N, Lü Y, Shi J. J. Nat. Prod. 2004; 67: 1032
    • 6c Wang L.-J, Guo C.-L, Li X.-Q, Wang S.-Y, Jiang B, Zhao Y, Luo J, Xu K, Liu H, Guo S.-J, Wu N, Shi D.-Y. Mar. Drugs 2017; 15: 343
  • 7 Synthetic Route to 3-Bromo-4-hydroxy Butyl Benzoate (4a); Typical Procedure A 10 mL double-necked round-bottomed flask equipped with a magnetic stirring bar was charged with 4-hydroxybenzaldehyde (1) (244 mg, 2.0 mmol), photocatalyst IrIII[df(CF3)ppy]2(dtbbpy)PF6 (45 mg, 0.04 mmol), CCl3Br [2, 793 mg, 4.0 mmol (to synthesize 4a'l', 4.0 mmol of Selectfluor 12 was used instead, with 2.0 mmol of 1 or non-hydroxy benzaldehydes 13ac and the inert atmosphere was maintained)], n-BuOTBDMS (3a) (1.13 g, 6.0 mmol) and acetonitrile (5.0 mL) at room temperature. The mixture was irradiated under 445 nm blue LED array for 7 h in air. The reaction was monitored by TLC. After completion of the reaction the solvent was evaporated under reduced pressure. The residue was distributed in water (10 mL) and extracted with ethyl acetate (20×3 mL). The combined organic layers were dried with anhydrous MgSO4 and concentrated under reduced pressure. The crude product was purified by column chromatography by using 100–200 mesh silica gel with use of 5–10% ethyl acetate in hexanes as the eluent to afford pure 3-bromo-4-hydroxy butyl benzoate (4a) as a white crystalline solid in 85% yield (464 mg). A similar methodology was executed with the other substrates. Spectral Data of New Compounds 2,2,2-Trifluoroethyl 3-bromo-4-hydroxybenzoate (4d): Yield: 465 mg (78%); Rf 0.39 (EtOAc/petroleum ether, 1:4); white crystalline solid; mp 53–55 °C; 1H NMR (400 MHz, CDCl3): δ = 4.68 (q, J H–F = 8.0 Hz, 2 H), 6.14 (br s, 1 H), 7.08 (d, J = 8.0 Hz, 1 H), 7.96 (dd, J = 8.0, 4.0 Hz, 1 H), 8.21 (d, J = 2.0 Hz, 1 H); 13C NMR (100 MHz, CDCl3): δ = 61.0 (q, J C–F = 36.3 Hz), 110.5, 116.2, 122.3, 123.2 (q, J C–F = 275.7 Hz), 131.7, 134.5, 157.2, 163.6; HRMS (ESI): m/z [M + H]+ calcd for C9H7BrF3O3: 298.9531; found: 298.9526. 3-Chloropropyl 3-bromo-4-hydroxybenzoate (4f): Yield: 446 mg (76%); Rf 0.35 (EtOAc/petroleum ether, 1:4); white crystalline solid; mp 92–94 °C; 1H NMR (400 MHz, CDCl3): δ = 2.22 (quin, J = 8.0 Hz, 2 H), 3.68 (t, J = 8.0 Hz, 2 H), 4.45 (t, J = 8.0 Hz, 2 H), 6.15 (br s, 1 H), 7.05 (d, J = 8.0 Hz, 1 H), 7.91 (dd, J = 8.0, 4.0 Hz, 1 H), 8.17 (d, J = 4.0 Hz, 1 H); 13C NMR (100 MHz, CDCl3): δ = 31.8, 41.4, 62.1, 110.3, 116.0, 124.0, 131.2, 134.1, 156.5, 165.1; HRMS (ESI): m/z [M + Na]+ calcd for C10H10BrClNaO3: 314.9400; found: 314.9398. Prop-2-yn-1-yl 3-bromo-4-hydroxybenzoate (4h): Yield: 311 mg (61%); Rf 0.43 (EtOAc/petroleum ether, 1:4); white crystalline solid; mp 144–146 °C; 1H NMR (400 MHz, CDCl3): δ = 2.52 (s, 1 H), 4.90 (d, J = 2.0 Hz, 2 H), 6.01 (br s, 1 H), 7.06 (d, J = 8.0 Hz, 1 H), 7.95 (dd, J = 8.0, 2.0 Hz, 1 H), 8.22 (d, J = 4.0 Hz, 1 H); 13C NMR (100 MHz, CDCl3): δ = 52.7, 75.3, 77.7, 110.3, 116.0, 123.4, 131.5, 134.3, 156.7, 164.4; HRMS (ESI): m/z [M + H]+ calcd for C10H8BrO3: 254.9657; found: 254.9661. Cyclohexyl 3-bromo-4-hydroxybenzoate (4j): Yield: 395 mg (66%); Rf 0.39 (EtOAc/petroleum ether, 1:4); white crystalline solid; mp 119–121 °C; 1H NMR (400 MHz, CDCl3): δ = 1.31–1.48 (m, 3 H), 1.53–1.60 (m, 3 H), 1.77–1.79 (m, 2 H), 1.92–1.94 (m, 2 H), 4.99 (quin, J = 4.0 Hz, 1 H), 6.04 (bs, 1H), 7.04 (d, J = 8.0 Hz, 1 H), 7.93 (d, J = 12.0 Hz, 1 H), 8.18 (s, 1 H); 13C NMR (100 MHz, CDCl3): δ = 23.9, 25.6, 31.8, 73.5, 110.1, 115.8, 125.0, 131.1, 134.0, 156.2, 164.7; HRMS (ESI): m/z [M + Na]+ calcd for C13H15BrNaO3: 321.0102; found: 321.0101. Undecyl 3-bromo-4-hydroxybenzoate (4l): Yield: 379 mg (51%); Rf 0.58 (EtOAc/petroleum ether, 1:4); white crystalline solid; mp 59–61 °C; 1H NMR (400 MHz, CDCl3): δ = 0.87 (t, J = 8.0 Hz, 3 H), 1.26–1.41 (m, 15 H), 1.70–1.78 (m, 3 H), 4.28 (t, J = 8.0 Hz, 2 H), 6.22 (br s, 1 H), 7.04 (d, J = 8.0 Hz, 1 H), 7.91 (dd, J = 8.0, 2.0 Hz, 1 H), 8.18 (d, J = 4.0 Hz, 1 H); 13C NMR (100 MHz, CDCl3): δ = 14.3, 22.8, 26.1, 28.8, 29.4, 29.5, 29.6, 29.7 (2), 32.0, 65.5, 110.2, 115.9, 124.5, 131.1, 134.1, 156.4, 165.4; HRMS (ESI): m/z [M + Na]+ calcd for C18H27BrNaO3: 393.1041; found: 393.1044.
    • 8a Caldwell N, Jamieson C, Simpson I, Watson AJ. B. Chem. Commun. 2015; 51: 9495
    • 8b Queyroy S, Vanthuyne N, Gastaldi S, Bertrand MP, Gil G. Adv. Synth. Catal. 2012; 354: 1759
    • 8c McAllister LA, Bechle BM, Dounay AB, Evrard E, Gan X, Ghosh S, Kim J.-Y, Parikh VD, Tuttle JB, Verhoest PR. J. Org. Chem. 2011; 76: 3484
    • 8d Nechab M, Blidi LE, Vanthuyne N, Gastaldi S, Bertrand MP, Gil G. Org. Biomol. Chem. 2008; 6: 3917
  • 9 Zhang P, Le C, MacMillan DW. C. J. Am. Chem. Soc. 2016; 138: 8084
    • 10a Kharasch MS, Jensen EV, Urry WH. Science 1945; 102: 128
    • 10b Kharasch MS, Jensen EV, Urry WH. J. Am. Chem. Soc. 1947; 69: 1100
    • 10c Kharasch MS, Kuderna BM, Urry W. J. Org. Chem. 1948; 13: 895
    • 11a Lantaño B, Postigo A. Org. Biomol. Chem. 2017; 15: 9954
    • 11b Bloom S, McCann M, Lectka T. Org. Lett. 2014; 16: 6338
    • 11c Ventre S, Petronijevi FR, MacMillan DW. C. J. Am. Chem. Soc. 2015; 137: 5654
    • 11d Nyffeler PT, Durón SG, Burkart MD, Vincent SP, Wong C.-H. Angew. Chem. Int. Ed. 2005; 44: 192
    • 11e Kee CW, Chin KF, Wong MW, Tan C.-H. Chem. Commun. 2014; 50: 8211
    • 11f Wu X, Meng C, Yuan X, Jia X, Qian X, Ye J. Chem. Commun. 2015; 51: 11864