Synthesis 2019; 51(09): 1949-1960
DOI: 10.1055/s-0037-1610684
paper
© Georg Thieme Verlag Stuttgart · New York

Unexpected PF6 Anion Metathesis during the Bischler–Napieralski Reaction: Synthesis of 3,4-Dihydroisoquinoline Hexafluorophosphates and Their Tetrahydroisoquinoline Related Alkaloids

a   Laboratorio de Química Orgánica y Biomolecular, CMN, Universidad Industrial de Santander, Parque Tecnológico Guatiguará, Km 2 Vía Refugio, Piedecuesta 681011, Colombia   Email: kouznet@uis.edu.co   Email: vkuznechnik@gmail.com
,
Mario A. Macías
b   Department of Chemistry, Universidad de los Andes, Carrera 1 No. 18A 10, Bogotá 111711, Colombia
,
a   Laboratorio de Química Orgánica y Biomolecular, CMN, Universidad Industrial de Santander, Parque Tecnológico Guatiguará, Km 2 Vía Refugio, Piedecuesta 681011, Colombia   Email: kouznet@uis.edu.co   Email: vkuznechnik@gmail.com
› Author Affiliations
We thank the Colombian Institute for Science and Research (COLCIENCIAS) under the project No. RC-0346-2013 for the financial support.
Further Information

Publication History

Received: 22 October 2018

Accepted after revision: 20 December 2018

Publication Date:
18 February 2019 (online)


Abstract

A series of N-phenethylcinnamamides were subjected to the Bischler–Napieralski reaction to furnish diverse 1-styryl-3,4-dihydroisoquinolines. We noticed that the desired products were unstable when the reaction was performed under conventional solvent conditions. However, when [bmim]PF6 was used as the reaction media, the nature of the Bischler–Napieralski reaction promoted an unusual in situ ionic interchange between this ionic liquid and the dihydroisoquinoline core that led to the stabilization of the desired 1-styryl-3,4-dihydroisoquinolines, allowing their isolation as hexafluorophosphate salts. Finally, the one-pot reduction/reductive methylation process afforded the N-methyl derivatives, establishing that our findings can be an efficient and useful strategy for the concise synthesis of tetrahydroisoquinoline alkaloids.

Supporting Information

 
  • References

  • 1 Liu RY, Bae M, Buchwald SL. J. Am. Chem. Soc. 2018; 140: 1627
    • 2a Bischler A, Napieralski B. Chem. Ber. 1893; 26: 2
    • 2b Fodor G, Nagubandi S. Tetrahedron 1980; 36: 1279
  • 3 Orito K, Matsuzaki T, Suginome H, Rodrigo R. Heterocycles 1988; 27: 2403
  • 4 Nash A, Qi X, Maity P, Owens K, Tambar UK. Angew. Chem. Int. Ed. 2018; 57: 6888
  • 5 Bracca AB. J, Kaufman TS. Eur. J. Org. Chem. 2007; 5284
    • 6a Heravi MM, Nazari N. Curr. Org. Chem. 2015; 19: 2358
    • 6b Kilgore MB, Kutchan TM. Phytochem. Rev. 2016; 3: 317
  • 7 Puerto Galvis CE, Kouznetsov VV. Synthesis 2017; 49: 4535
  • 9 Tomimatsu Y. Yakugaku Zasshi 1957; 77: 7
  • 10 Harmon RE, Jensen BL, Gupta SK, Hanka LJ. Pharm. Sci. 1970; 59: 576
  • 11 McNaught KS, Thull U, Carrupt P.-A, Altomare C, Cellamare S, Carotti A, Testa B, Jenner P, Marsden CD. Biochem. Pharmacol. 1996; 51: 1503
  • 12 Párraga J, Galán A, Sanz MJ, Cabedo N, Cortes D. Eur. J. Med. Chem. 2015; 90: 101
  • 13 Mistryukov EA, Sorokina ON, Mistryukov AE. Mendeleev Commun. 1996; 6: 239
  • 14 Berenguer I, Aouad NE, Andujar S, Romero V, Freret T, Bermejo A, Ivorra MD, Enriz RD, Suvire F, Boulouard M, Cabedo N, Cortes D. Bioorg. Med. Chem. 2009; 17: 4968
  • 15 Judeh ZM. A, Ching CB, Bua J, McCluskey A. Tetrahedron Lett. 2002; 43: 5089
  • 16 Epishina MA, Kulikov AS, Struchkova MI, Ignat’ev NV, Schulte M, Makhova NN. Mendeleev Commun. 2012; 22: 267
  • 17 Achmatowicz MM, Thiel OR, Colyer JT, Hu J, Silva Elipe MV, Tomaskevitch J, Tedrow JS, Larsen RD. Org. Process Res. Dev. 2010; 14: 1490
    • 18a Huddleston JG, Willauer HD, Swatloski RP, Visser AE, Rogers RD. Chem. Commun. 1998; 1765
    • 18b Swatloski RP, Holbrey JD, Rogers RD. Green Chem. 2003; 5: 361
    • 19a Dinarès I, Garcia de Miguel C, Ibáñez A, Mesquida N, Alcalde E. Green Chem. 2009; 11: 1507
    • 19b Alcalde E, Dinarès I, Ibáñez A, Mesquida N. Molecules 2012; 17: 4007
  • 20 Payal RS, Balasubramanian S. Phys. Chem. Chem. Phys. 2013; 15: 21077
  • 21 Cha S, Kim D. Phys. Chem. Chem. Phys. 2015; 17: 29786
    • 22a Meng T.-Z, Zheng J, Trieu TH, Zheng B, Wu J.-J, Zhang Y, Shi X.-X. ACS Omega 2018; 3: 544
    • 22b Manjappa KB, Lin J.-M, Yang D.-Y. J. Org. Chem. 2017; 82: 7648
  • 23 CCDC 1859748 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
  • 24 He L, Laurent G, Retailleau P, Folléas B, Brayer J.-L, Masson G. Angew. Chem. Int. Ed. 2013; 52: 11088
  • 25 Mukherjee S, Corey EJ. Org. Lett. 2010; 12: 632
    • 26a Ding Z.-Y, Wang T, He Y.-M, Chen F, Zhou H.-F, Fan Q.-H, Guo Q, Chan AS. C. Adv. Synth. Catal. 2013; 355: 3727
    • 26b Wang D, Astruc D. Chem. Rev. 2015; 115: 6621
    • 26c Foubelo F, Yus M. Chem. Rec. 2015; 15: 907
    • 26d Noyori R, Hashiguchi S. Acc. Chem. Res. 1997; 30: 97
    • 27a Pechácek J, Václavík J, Prech J, Šot P, Janušcák J, Vilhanová B, Vavrik J, Kuzma M, Kacer P. Tetrahedron: Asymmetry 2013; 24: 233
    • 27b Shende VS, Shingote SK, Deshpande SH, Kuriakose N, Vanka K, Kelkar AA. RSC Adv. 2014; 4: 46351
    • 27c Kuzma M, Václavík J, Novák P, Přech J, Januščák J, Červený J, Pecháček J, Šot P, Vilhanová B, Matoušek V, Goncharova II, Urbanová M, Kačer P. Dalton Trans. 2013; 42: 5174
    • 28a Wu J, Wang F, Ma Y, Cui X, Cun L, Zhu J, Deng J, Yu B. Chem. Commun. 2006; 1766
    • 28b Evanno L, Ormala J, Pihko PM. Chem. Eur. J. 2009; 15: 12963
    • 29a Fujii A, Hashiguchi S, Uematsu N, Ikariya T, Noyori R. J. Am. Chem. Soc. 1996; 118: 2521
    • 29b Uematsu N, Fujii A, Hashiguchi S, Ikariya T, Noyori R. J. Am. Chem. Soc. 1996; 118: 4916
  • 30 Shende VS, Deshpande SH, Shingote SK, Joseph A, Kelkar AA. Org. Lett. 2015; 17: 2878
  • 31 Wu M, Cheng T, Ji M, Liu G. J. Org. Chem. 2015; 80: 3708
  • 32 Reddy RJ, Kawai N, Uenishi J. J. Org. Chem. 2012; 77: 11101
  • 33 Lin W, Ma S. Org. Chem. Front. 2014; 1: 338
  • 34 Lanigan RM, Starkov P, Sheppard TD. J. Org. Chem. 2013; 78: 4512