Carbonyl-Catalyzed Biomimetic Asymmetric Mannich Reaction

Significance: The Zhao group reports the activation of primary amines by carbonyls. Using an N-quaternized pyridoxal catalyst for the direct asymmetric Mannich reaction of glycinate with aryl \(N \)-diphenylphosphinyl imines, \(\alpha,\beta \)-diamino acid esters were obtained in good yields and excellent stereoselectivities.

Comment: Based on their recently developed chiral pyridoxal and pyridoxamine catalysts for transamination reactions (J. Am. Chem. Soc. 2016, 138, 10730), the authors developed a catalyst that activates primary amines through carbonyl catalysis. In contrast to other \(\alpha \)-functionalizations of primary amines, this fascinating catalysis strategy does not require protecting-group manipulation.

Proposed reaction mechanism:

- Reactants: Carbonyl catalyst (1 mol%), NaHCO\(_3\), CHCl\(_3\)-H\(_2\)O (1:1), 10 °C, 4–39 h
- Products: \(\alpha,\beta \)-diamino acid esters
- Conditions: 32 examples, 47–94% yield, dr from 17:1 to >20:1, er from 97:3 to 99.5:0.5

Selected examples:

<table>
<thead>
<tr>
<th>R = Ar, HetAr</th>
<th>90% yield</th>
<th>dr > 20:1</th>
<th>er = 99.5:0.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ph(\text{N}^+\text{Cl}^-\text{N}^+\text{Ph})</td>
<td>82% yield</td>
<td>dr > 20:1</td>
<td>er = 97:3</td>
</tr>
<tr>
<td>Ph(\text{N}^+\text{Ph})</td>
<td>77% yield</td>
<td>dr > 20:1</td>
<td>er = 99:1</td>
</tr>
<tr>
<td>Ph(\text{N}^+\text{Ph})</td>
<td>67% yield</td>
<td>dr > 20:1</td>
<td>er = 99:1</td>
</tr>
</tbody>
</table>

N\(\text{Me}^+\text{OH}^+\text{N}^+\text{Ph})

\(\text{Ph}_2\text{P(O)N}^+\text{NH}_2\)

\(\text{Ph}_2\text{P(O)N}^+\text{NH}_2\)