Synlett 2018; 29(14): 1914-1920
DOI: 10.1055/s-0037-1610532
letter
© Georg Thieme Verlag Stuttgart · New York

Synthesis of 3-Sulfenylindoles from Indoles and Various Sulfenylation Agents through Aerobic Oxidative C–S Bond Coupling

Chaorong Xu
College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. of China   Email: limc@zjut.edu.cn   Email: zhenlushen@zjut.edu.cn
,
Shanli Yi
College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. of China   Email: limc@zjut.edu.cn   Email: zhenlushen@zjut.edu.cn
,
Meichao Li*
College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. of China   Email: limc@zjut.edu.cn   Email: zhenlushen@zjut.edu.cn
,
Xinquan Hu
College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. of China   Email: limc@zjut.edu.cn   Email: zhenlushen@zjut.edu.cn
,
Nan Sun
College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. of China   Email: limc@zjut.edu.cn   Email: zhenlushen@zjut.edu.cn
,
Liqun Jin
College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. of China   Email: limc@zjut.edu.cn   Email: zhenlushen@zjut.edu.cn
,
Baoxiang Hu
College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. of China   Email: limc@zjut.edu.cn   Email: zhenlushen@zjut.edu.cn
,
Zhenlu Shen*
College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. of China   Email: limc@zjut.edu.cn   Email: zhenlushen@zjut.edu.cn
› Author Affiliations
This project was supported by the National Natural Science Foundation of China (21776260, 21773211 and 21376224) and the Natural Science Foundation of Zhejiang Province (LY17B060007).
Further Information

Publication History

Received: 02 June 2018

Accepted after revision: 02 July 2018

Publication Date:
02 August 2018 (online)


Abstract

A novel aerobic catalytic oxidation system for the sulfenylation of indoles with a variety of sulfenylation agents through oxidative C–S bond coupling has been successfully developed. The reactions were performed with potassium iodide as the catalyst, sodium nitrite as the co-catalyst, and molecular oxygen as the terminal oxidant in the presence of acetic acid. Under the optimal reaction conditions, a number of indoles could be sulfenylated with Bunte salts, thiols, or disulfides to generate 3-sulfenylindoles in good yields. This protocol provided an efficient and environmentally benign strategy for the synthesis of 3-sulfenylindoles.

Supporting Information

 
  • References and Notes

    • 1a Iwasaki M. Iyanaga M. Tsuchiya Y. Nishimura Y. Li W. Li Z. Nishihara Y. Chem. Eur. J. 2014; 20: 2459
    • 1b Zou LH. Reball J. Mottweiler J. Bolm C. Chem. Commun. 2012; 48: 11307
    • 1c Li X. Xu Y. Wu W. Jiang C. Qi C. Jiang H. Chem. Eur. J. 2014; 20: 7911
    • 1d Xu Y. Tang X. Hu W. Wu W. Jiang H. Green Chem. 2014; 16: 3720
    • 1e Qiu R. Reddy VP. Iwasaki T. Kambe N. J. Org. Chem. 2015; 80: 367
    • 1f Bagdi AK. Mitra S. Ghosh M. Hajra A. Org. Biomol. Chem. 2015; 13: 3314
    • 1g Du BX. Quan ZJ. Da Y X. Zhang Z. Wang XC. Adv. Synth. Catal. 2015; 357: 1270
    • 1h Wang X. Qiu R. Yan C. Reddy VP. Zhu L. Xu X. Yin S.-F. Org. Lett. 2015; 17: 1970
    • 1i Rahaman R. Devi N. Barman P. Tetrahedron Lett. 2015; 56: 4224
    • 1j Ranjit S. Lee R. Heryadi D. Shen C. Wu J. Zhang P. Huang K.-W. Liu X. J. Org. Chem. 2011; 76: 8999
    • 2a Ragno R. Coluccia A. La Regina G. De Martino G. Piscitelli F. Lavecchia A. Novellino E. Bergamini A. Ciaprini C. Sinistro A. J. Med. Chem. 2006; 49: 3172
    • 2b Kochanowska-Karamyan AJ. Hamann MT. Chem. Rev. 2010; 110: 4489
    • 3a Unangst PC. Connor DT. Stabler SR. Weikert RJ. Carethers ME. Kennedy JA. Thueson DO. Chestnut JC. Adolphson RL. Conroy M. J. Med. Chem. 1989; 32: 1360
    • 3b Funk CD. Nat. Rev. Drug Discovery 2005; 4: 664
    • 3c Khandekar SS. Gentry DR. Van Aller GS. Warren P. Xiang H. Silverman C. Doyle ML. Chambers PA. Konstantinidis AK. Brandt M. Daines RA. Lonsdale JT. J. Biol. Chem. 2001; 276: 30024
    • 3d La Regina G. Edler MC. Brancale A. Kandil S. Coluccia A. Piscitelli F. Hamel E. De Martino G. Matesanz R. Díaz JF. J. Med. Chem. 2007; 50: 2865
    • 3e Silvestri R. De Martino G. La Regina G. Artico M. Massa S. Vargiu L. Mura M. Loi AG. Marceddu T. La Colla P. J. Med. Chem. 2003; 46: 2482
    • 3f Dong D.-Q. Hao S.-H. Yang D.-S. Li L.-X. Wang Z.-L. Eur. J. Org. Chem. 2017; 6576
    • 4a Rao H. Wang P. Wang J. Li Z. Sun X. Cao S. RSC Adv. 2014; 4: 49165
    • 4b Katrun P. Hongthong S. Hlekhlai S. Pohmakotr M. Reutrakul V. Soorukram D. Jaipetch T. Kuhakarn C. RSC Adv. 2014; 4: 18933
    • 4c Katrun P. Mueangkaew C. Pohmakotr M. Reutrakul V. Jaipetch T. Soorukram D. Kuhakarn C. J. Org. Chem. 2014; 79: 1778
    • 4d Xiao F. Xie H. Liu S. Deng G.-J. Adv. Synth. Catal. 2014; 356: 364
    • 4e Huang X. Wang S. Li B. Wang X. Ge Z. Li R. RSC Adv. 2015; 5: 22654
    • 4f Rahaman R. Barman P. Eur. J. Org. Chem. 2017; 6327
    • 4g Ge X. Sun F. Liu X. Chen X. Qian C. Zhou S. New J. Chem. 2017; 41: 13175
    • 5a Raban M. Chern L.-J. J. Org. Chem. 1980; 45: 1688
    • 5b Bottino F. Fradullo R. Pappalardo S. J. Org. Chem. 1981; 46: 2793
    • 5c Gilow HM. Brown CS. Copeland JN. Kelly KE. J. Heterocycl. Chem. 1991; 28: 1025
    • 5d Hamel P. J. Org. Chem. 2002; 67: 2854
    • 6a Wu Q. Zhao D. Qin X. Lan J. You J. Chem. Commun. 2011; 47: 9188
    • 6b Kumaraswamy G. Rajua R. Narayanaraoa V. RSC Adv. 2015; 5: 22718
    • 6c Chen M. Huang Z.-T. Zheng Q.-Y. Chem. Commun. 2012; 48: 11686
    • 7a Tudge M. Tamiya M. Savarin C. Humphrey GR. Org. Lett. 2006; 8: 565
    • 7b Marcantoni E. Cipolletti R. Marsili L. Menichetti S. Properzi R. Viglianisi C. Eur. J. Org. Chem. 2013; 132
    • 7c Silveira CC. Mendes SR. Wolf L. Martins GM. Tetrahedron Lett. 2010; 51: 2014
    • 7d Hostier T. Ferey V. Ricci G. Gomez Pardo D. Cossy J. Chem. Commun. 2015; 51: 13898
    • 7e Viglianisi C. Marcantoni E. Carapacchi V. Menichetti S. Marsili L. Eur. J. Org. Chem. 2014; 6405
    • 8a Matsugi M. Murata K. Gotanda K. Nambu H. Anilkumar G. Matsumoto K. Kita Y. J. Org. Chem. 2001; 66: 2434
    • 8b Matsugi M. Murata K. Nambu H. Kita Y. Tetrahedron Lett. 2001; 42: 1077
    • 9a Yang F.-L. Tian S.-K. Angew. Chem. Int. Ed. 2013; 52: 4929
    • 9b Rahaman R. Devi N. Sarma K. Barman P. RSC Adv. 2016; 6: 10873
    • 10a Liu C.-R. Ding L.-H. Org. Biomol. Chem. 2015; 13: 2251
    • 10b Rahaman R. Devi N. Bhagawati JR. Barman P. RSC Adv. 2016; 6: 18929
    • 11a Li Z. Hong J. Zhou X. Tetrahedron 2011; 67: 3690
    • 11b Ge W. Wei Y. Green Chem. 2012; 14: 2066
    • 11c Zhou X. Li X. RSC Adv. 2014; 4: 1241
    • 11d Huang D. Chen J. Dan W. Ding J. Liu M. Wu H. Adv. Synth. Catal. 2012; 354: 2123
    • 11e Fang X.-L. Tang R.-Y. Zhong P. Li J.-H. Synthesis 2009; 4183
    • 11f La Regina G. Gatti V. Famiglini V. Piscitelli F. Silvestri R. ACS Comb. Sci. 2012; 14: 258
    • 11g Ge W. Wei Y. Synthesis 2012; 44: 934
    • 11h Browder CC. Mitchell MO. Smith RL. el-Sulayman G. Tetrahedron Lett. 1993; 34: 6245
    • 11i Azeredo JB. Godoi M. Martins GM. Silveira CC. Braga AL. J. Org. Chem. 2014; 79: 4125
    • 11j Ye L.-m. Chen J. Mao P. Zhang X.-j. Yan M. Tetrahedron Lett. 2017; 58: 2743
    • 12a Maeda Y. Koyabu M. Nishimura T. Uemura S. J. Org. Chem. 2004; 69: 7688
    • 12b Schlosser KM. Krasutsky AP. Hamilton HW. Reed JE. Sexton K. Org. Lett. 2004; 6: 819
    • 12c Cao H. Chen L. Liu J. Cai H. Deng H. Chen G. Yan C. Chen Y. RSC Adv. 2015; 5: 22356
    • 12d Yadav JS. Reddy BV. S. Reddy YJ. Tetrahedron Lett. 2007; 48: 7034
    • 12e Campbell JA. Broka CA. Gong L. Walker KA. M. Wang J.-H. Tetrahedron Lett. 2004; 45: 4073
    • 12f Hiebel M.-A. Berteina-Raboin S. Green Chem. 2015; 17: 937
    • 12g Yadav J. Reddy B. Reddy Y. Praneeth K. Synthesis 2009; 1520
    • 12h Zhang H. Bao X. Song Y. Qu J. Wang B. Tetrahedron 2015; 71: 8885
    • 12i Liu Y. Zhang Y. Hu C. Wan J.-P. Wen C. RSC Adv. 2014; 4: 35528
    • 12j Wu G. Wu J. Wu J. Wu L. Synth. Commun. 2008; 38: 1036
    • 12k Zhang X. Zhou X. Xiao H. Li X. RSC Adv. 2013; 3: 22280
    • 13a Qi H. Zhang T. Wan K. Luo M. J. Org. Chem. 2016; 81: 4262
    • 13b Li J. Cai Z.-J. Wang S.-Y. Ji S.-J. Org. Biomol. Chem. 2016; 14: 9384
    • 13c Al-Saedy MA. E. Nassoy MM. A. Harrity JP. A. Synlett 2018; 29: 349
    • 14a Bunte H. Ber. Dtsch. Chem. Ges. 1874; 7: 646
    • 14b Distler H. Angew. Chem. Int. Ed. Engl. 1967; 6: 544
    • 14c Lecher HZ. Hardy EM. J. Org. Chem. 1955; 20: 475
    • 14d Weston CD. In The Chemistry of Synthetic Dyes . Vol. VII, Chap. II. Venkataraman K. Academic Press; New York: 1974: 35
    • 14e Reeves JT. Camara K. Han ZS. Xu YB. Lee H. Busacca CA. Senanayake CH. Org. Lett. 2014; 16: 1196
    • 14f Lin Y.-m. Lu G.-p. Cai C. Yi W.-b. RSC Adv. 2015; 5: 27107
    • 14g Qiao Z. Ge N. Jiang X. Chem. Commun. 2015; 51: 10295
    • 14h Xiao X. Feng M. Jiang X. Chem. Commun. 2015; 51: 4208
    • 14i Liu F. Yi W. Org. Chem. Front. 2018; 5: 428
  • 15 Yi S. Li M. Mo W. Hu X. Hu B. Sun N. Jin L. Shen Z. Tetrahedron Lett. 2016; 57: 1912
    • 16a Block LH. Drug Cosmet. Ind. 1964; 95: 342
    • 16b Buckley A. J. Chem. Educ. 1965; 42: 674
    • 16c Leake CD. Science 1966; 152: 1646
    • 16d Epstein WW. Sweat FW. Chem. Rev. 1967; 67: 247
    • 17a He X. Shen Z. Mo W. Sun N. Hu B. Hu X. Adv. Synth. Catal. 2009; 351: 89
    • 17b Fang C. Li M. Hu X. Mo W. Hu B. Sun N. Jin L. Shen Z. Adv. Synth. Catal. 2016; 358: 1157
    • 17c Shen Z. Dai J. Xiong J. He X. Mo W. Hu B. Sun N. Hu X. Adv. Synth. Catal. 2011; 353: 3031
    • 17d Shen Z. Chen M. Fang T. Li M. Mo W. Hu B. Sun N. Hu X. Tetrahedron Lett. 2015; 56: 2768
    • 17e Shen Z. Sheng L. Zhang X. Mo W. Hu B. Sun N. Hu X. Tetrahedron Lett. 2013; 54: 1579
    • 17f Ma J. Hong C. Wan Y. Li M. Hu X. Mo W. Hu B. Sun N. Jin L. Shen Z. Tetrahedron Lett. 2017; 58: 652
    • 17g Ma J. Hu Z. Li M. Zhao W. Hu X. Mo W. Hu B. Sun N. Shen Z. Tetrahedron 2015; 71: 6733
    • 18a Fang C. Chao M. Hu X. Mo W. Hu B. Sun N. Jin L. Shen Z. RSC Adv. 2017; 7: 1484
    • 18b Chen C. Niu P. Shen Z. Li M. J. Electrochem. Soc. 2018; 165, G67
    • 18c Hong Y. Fang T. Li M. Shen Z. Hu X. Mo W. Hu B. Sun N. Jin L. RSC Adv. 2016; 6: 51908
    • 18d Ma J. Wan Y. Hong C. Li M. Hu X. Mo M. Hu B. Sun N. Jin L. Shen Z. Eur. J. Org. Chem. 2017; 3335
    • 18e Yi S.-L. Li M.-C. Hu X.-Q. Mo W.-M. Shen Z.-L. Chin. Chem. Lett. 2016; 27: 1505
  • 19 3-[(3-Methoxyphenyl)thio]-1H-indole (3aa):Typical Procedure A 15 mL tube equipped with a magnetic stirring bar was charged with 1H-indole (0.5 mmol), sodium S-(3-methoxyphenyl) thiosulfate (0.6 mmol), KI (20 mol%), and NaNO2 (10 mol%). The tube was then sealed with a rubber plug, and MeCN (3 mL) and HOAc (0.5 mL) were injected into the tube. The air in the tube was replaced by charging with oxygen, and the mixture was stirred under an oxygen atmosphere (balloon) at 80 °C until the reaction was complete (GC). The mixture was cooled to r.t. and the solvent was removed under vacuum. The residue was washed with 10% aq Na2S2O3 (30 mL) and extracted with CH2Cl2 (4 × 20 mL). The organic layer was then dried (Na2SO4) and concentrated under vacuum. The residue was further purified by flash column chromatography (silica gel, PE–Et2O) to give a light-yellow solid; yield: 92 mg (72%); mp 87.6–88.4 °C. 1H NMR (500 MHz, CDCl3): δ = 8.44 (s, 1 H), 7.64 (d, J = 8.0 Hz, 1 H), 7.51 (d, J = 2.6 Hz, 1 H), 7.45 (d, J = 8.2 Hz, 1 H), 7.30–7.27 (m, 1 H), 7.20–7.17 (m, 1 H), 7.09 (t, J = 8.0 Hz, 1 H), 6.71–6.70 (m, 2 H), 6.63–6.61 (m, 1 H), 3.70 (s, 3 H). 13C NMR (125 MHz, CDCl3): δ = 159.8, 140.8, 136.5, 130.7, 129.5, 129.1, 123.1, 120.9, 119.6, 118.2, 111.6, 111.5, 110.3, 102.6, 55.1. MS (EI): m/z (%) = 255.2 [M+] (100).
    • 20a Milligan B. Swan JM. J. Chem. Soc. 1962; 2172
    • 20b Rieke RD. Bales E. Roberts LC. J. Chem. Soc., Chem. Commun. 1972; 974
    • 20c Zhang RX. Yan ZH. Wang DY. Wang YX. Lin S. Synlett 2017; 28: 1195