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Abstract 5,6-Diaminoacenaphthylene was synthesized in four steps
from acenaphthene. This seemingly simple molecule provides unique
synthetic challenges because it is relatively difficult to reduce the nitro
groups and the molecule contains a particularly reactive double bond. It
was determined that the only feasible sequence for the synthesis was to
nitrate acenaphthene, then brominate, eliminate, and finally selectively
reduce. Several reduction methods were attempted before finding one
that would completely reduce both nitro groups while leaving the dou-
ble bond intact.

Key words nitration, bromination, elimination, reduction, sodium di-
thionite

5,6-Diaminoacenaphthylene (DAAnl) was desired as a
potentially useful building block in the synthesis of carbon-
yl-substituted perimidinespirohexadienones (PSHDs)1,2

previously pursued in our group (Scheme 1).
Initially we intended to couple carbonyl-substituted

1,8-diaminonaphthalenes to 2,6-di-tert-butylbenzoqui-
none (DBB) to synthesize carbonyl-substituted PSHDs.
However, on attempted coupling of 1,8-diaminonaphthalic
anhydride (or its alkyl imides)3–5 with DBB, the carbonyl
electron-withdrawing groups rendered the amino groups
entirely non-nucleophilic and no reaction occurred
(Scheme 1, top). Thus, we concluded that the carbonyls
would need to be installed after coupling. We proposed that
either 5,6-diaminoacenaphthene (DAAn) or 5,6-diaminoa-
cenaphthylene (DAAnl) could be coupled with DBB to form
a PSHD analogue that could then be oxidized to a carbonyl-
substituted PSHD. We were able to successfully synthesize
5,6-diaminoacenaphthene (DAAn) in high yield and purity
in two steps from acenaphthene (An).6 However, coupling

with DBB failed, instead yielding the reduction product of
DBB, 2,6-di-tert-butylhydroquinone, and polymeric by-
products (Scheme 1, middle). We presumed that this was
due to the easily abstractable benzylic hydrogens on DAAn.
Thus, we realized that DAAnl (clearly much less readily oxi-
dized) would be required for coupling, to avoid reducing
DBB. Unfortunately, this deceptively simple molecule had
not been previously reported.

Having previously prepared DAAn (Scheme 1, middle),
we attempted benzylic bromination, in order to subse-
quently eliminate to the desired DAAnl. However, we found
that it was not possible to brominate DAAn at the desired
position with either N-bromosuccinimide (NBS) or molecu-
lar bromine, perhaps because the dark color of the com-

Scheme 1  Proposed routes to carbonyl-substituted PSHDs
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pound in solution precluded photoinitiation of the free rad-
ical benzylic bromination. We also attempted direct oxida-
tion of DAAn to DAAnl with chloranil and 2,3-dichloro-5,6-
dicyano-1,4-benzoquinone (DDQ) to no avail.

Next, we turned to acenaphthylene (Anl) as a starting
material, so as not to have to install the double bond our-
selves. Our intent was to doubly nitrate and then reduce to
our desired DAAnl, as we had done to obtain DAAn from
acenaphthene. Unfortunately, the double bond in acenaph-
thylene proved too reactive. Conditions could not be found
that would doubly nitrate acenaphthylene without con-
comitantly oxidizing it to yield 1,8-dinitronaphthalic anhy-
dride (DNNA) (Scheme 1, bottom and red arrow).

This persuaded us that the only practical sequence for
the synthesis would be to nitrate acenaphthene (An),3,7

then install the double bond via bromination8,9 and elimi-
nation,9,10 and finally reduce the nitro groups to amino
groups (Scheme 2). This seemed entirely reasonable, as aro-
matic nitro groups can generally be reduced selectively in
the presence of olefins by several methods. Unfortunately,
the first several methods we employed to reduce dinitro-
acenaphthylene (DNAnl) to DAAnl were unsuccessful. The
nitro groups could not be reduced without also reducing
the double bond, even with several different reduction
methods, including ones known to successfully reduce p-ni-
trostyrene to p-aminostyrene.11 These failed methods are
outlined in Table 1. In all cases in which any reduction of
the nitro groups occurred, it was accompanied by either
substantial or complete reduction of the olefin.

We hypothesized that the highly reactive double bond
of acenaphthylene and dinitroacenaphthylene was to blame
for these results. We also hypothesized that the sterically
crowded nitro groups in dinitroacenaphthylene were likely
rotated out of plane relative to the arene and were thus not
typical of ‘nitroarenes’ for which this reduction is usually so

facile. Computations21–25 confirmed our geometric hypoth-
esis. The nitro groups are rotated 41 degrees relative to the
arene. Moreover the nitrogens are pushed out of plane with
the arene, with an unconventional dihedral angle between
N-C5-C6-N of 22 degrees; i.e., one N is roughly 11 degrees
above the plane of the arene and the other 11 degrees be-
low the plane. Beyond our geometric hypothesis, molecular
orbital calculations show very little frontier orbital (HOMO
or LUMO) density on the nitro groups in DNAnl, with high
coefficients in the bonding (HOMO) and antibonding
(LUMO) interaction of the olefin. In nitrostyrene, for com-
parison, the nitro group and the olefin are both coplanar
(all dihedrals < 0.5 degrees) with the benzene ring and,
while the HOMO has low coefficients on the nitro group,
the LUMO has its highest coefficients on the nitro groups.
Figure 1 shows the differences between DNAnl and nitro-
styrene in both geometry and frontier orbitals.

Table 1  Failed Reduction Attempts

Reductant Ref. Result

H2 (20-60 psi), 5% or 10% Pd/C, EtOAc or DMF 12 over-reduction,a or mixed reduction if stopped before completion

H2 (70 psi), Lindlar’s cat, DMF 13 no reaction

Fe, AcOH 2 over-reductiona

Fe, HCl 11 over-reductiona

Zn, CaCl2, EtOH 14 incomplete reduction mixturesb

Zn, NaOH, EtOH 15 incomplete reduction mixturesb

Sm 16 no reaction

SnCl2, HCl 17 over-reductiona at elevated temperatures; incomplete reduction mixturesb at lower temperatures

SnCl2, EtOH 18 minimal incomplete reduction

HI 19 incomplete reduction (+ HI addn)

Na2S 20 intractable mixtures, minimal redn
a Diaminoacenaphthene was major product by GC/MS (confirmed by 1H NMR in some cases).
b Substantial reduction of olefin detected by GC/MS before both nitro groups were reduced.

Scheme 2  Synthesis of 5,6-diaminoacenaphthylene
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Figure 1  Computed geometries and frontier orbitals of DNAnl and 
nitrostyrene

Serendipitously, years later, after having tried a sodium
dithionite reduction26 in other work, we realized it was one
reductant we had never tried in our attempts to reduce
DNAnl to DAAnl. Remarkably, it worked, to cleanly (albeit in
low yield) give the selective reduction we desired.27 We
note that the title compound is expected to be in the
‘Proton Sponge®’28 family of compounds and, in our hands,
care must be taken to avoid forming insoluble complexes in
the presence of metal ions or even weak acids. This, or pos-
sibly oxidation to dark insoluble species, may have been the
cause of the low yield in the ultimate step.

We admittedly do not report any particularly novel re-
actions or conditions. Nor do we have any particular insight
into why dithionite was the silver bullet for this successful
oxidation. We do not have any plans to immediately resume
work toward carbonyl-substituted PSHDs now that we have
prepared DAAnl. Nevertheless, we find it informative to re-
port our synthesis of this deceptively simple target and al-

low others the opportunity to learn from our experiences,
both generally and specifically to have access to DAAnl as a
potential starting material or intermediate in other synthe-
ses. While yields were low (2.0% over four steps), the ace-
naphthene starting material is very inexpensive and no pu-
rification was required at any point in the synthesis.
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