Palladium-Catalyzed Direct Acylation: One-Pot Relay Synthesis of Anthraquinones

Basuli Suchand
Gedu Satyanarayana*

Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi 502 285, Sangareddy, Telangana, India
gvsatya@iith.ac.in

Abstract
A bis-acylation strategy to access functionalized anthraquinones via one-pot relay process, is presented. The first acylation was feasible under [Pd]-catalyzed intermolecular direct acylation reaction, while, the second acylation was accomplished by using intramolecular Friedel–Crafts acylation. Notably, benchtop aldehydes have been utilized as non-toxic acylation agents in the key [Pd]-catalyzed acylation.

Key words anthraquinone, catalysis, acylation, one-pot, Friedel–Crafts acylation

Anthraquinones are essential chemical compounds and are prominent in pharmaceutical and materials chemistry. A wide range of natural products constitute anthraquinone structural motif, manifesting interesting biological features. These anthraquinone-based natural products are significant constituents in lichens, bacteria, fungi, enzymes, and higher plants. Also, anthraquinones are present in vitamins, pigments, etc. They exhibit anticancer, antitumor, antineoplastic, antibacterial, anti-HIV, and antitrypanosomal activities. For example, mitoxantrone (5), ametantrone (6), and doxorubicin (7) exhibit potent antitumor activities and have been utilized in medical care as powerful anticancer agents for the treatment of various leukemia and lymphomas (Figure 1). Moreover, anthraquinone derivatives are industrially utilized as versatile dyeing agents for coloring synthetic and natural fibers, such as wool, silk, cotton, polyester, and polyamide. In addition, these compounds have outstanding photo-oxidant properties, enabling them to absorb UV-A radiation. Further, anthraquinones are capable of cleaving protein molecules upon photoirradiation. Anthraquinone derivatives also serve as useful precursors for the synthesis of organic semiconductors and electronic devices.

The anthraquinones have been the target of synthetic chemists to accomplish various chemical strategies. As a result, numerous synthetic routes as well as their industrial applications have been exclusively examined. Anthraquinones are extensively synthesized on the industrial level as dye reagents. The diverse scope for anthraquinone derivatives includes Friedel–Crafts acylation reaction of phthalic anhydride with various substituted arenes, oxidation of anthracenes or hydroxyanthracenes, Diels–Alder reaction of isobenzofuran and chromium carbene, Lewis acid catalyzed or thermal Diels–Alder reactions and aromatization sequences, Diels–Alder reaction catalyzed by zinc iodide followed by Friedel–Crafts reaction, or Diels–Alder reaction catalyzed by zirconium dioxide. Moreover, the cyclization reactions of polyketides and copper-catalyzed intramolecular enyne cyclization between reduced 1,4-naphthoquinone and ortho-phthalaldehyde, and intramolecular dehydro Diels–Alder approach also belong to further routes towards anthraquinones. Apart from these...
advantages, most of these synthetic routes display a number of limitations, such as multiple reaction steps and the use of expensive catalysts.

Therefore, still, there is a room to develop simple, mild, and efficient strategies, which enable the synthesis of a range of anthraquinone derivatives. In this regard, we felt that sequential one-pot transformation would serve as an ideal protocol. Sequential one-pot methods render the construction of more than one bond and yield the products with reasonable complexity. Also, in comparison to stepwise methods, such protocols could contribute to some extent in saving time and reducing the amount of waste generated. Furthermore, these processes cut down the mundane task of isolating and purifying the intermediate product(s). In particular, transition-metal-catalyzed coupling reactions are very significant in the construction of carbon–carbon and carbon–heteroatom bonds. Therefore, we presumed that the synthesis of anthraquinones can be executed by means of a one-pot method, through transition-metal-catalyzed acylation and intramolecular Friedel–Crafts acylation. In this context, we have established direct acylation using benzylic aldehydes as non-toxic acylating agents, under palladium catalysis. Unlike earlier reports, the present protocol deals with [Pd]-catalyzed direct coupling (acylation) of iodoarenes with unactivated aldehydes. Based on this concept of direct acylation, recently, we have demonstrated one-pot formation of indenones, lactams, and phthalazines. Inspired by these results, herein, we describe an efficient sequential one-pot protocol, for the synthesis of various anthraquinones starting from commercially available ortho-iodobenzoates and aldehydes.

We intended that anthraquinones 3 could be achieved from ortho-keto esters 4 by employing intramolecular Friedel–Crafts acylation. The required ortho-keto esters 4 would be accomplished from ortho-iodomethylbenzoates 1 via [Pd]-catalyzed acylations as shown in Scheme 1.

In order to evaluate our protocol for the preparation of anthraquinones, we initiated the synthetic investigations by choosing methyl 2-iodobenzoate (1a) and aldehyde 2a as the model substrates. It has already been established that TBHP (tert-butyl hydroperoxide) in decane is as effective as TBHP in H₂O for carrying out acylation reaction in the presence of [Pd]-catalyst. Therefore, it was anticipated that the desired second reaction step (intramolecular Friedel–Crafts acylation) may be feasible in decane as inert solvent and would avoid the aid of any other solvent. Thus, the acylation reaction was carried out by subjecting ortho-iodoester 1a with aldehyde 2a using our previously reported conditions [i.e., Pd(OAc)₂ (5 mol%), Ag₂O (1.2 equiv), TBHP in decane (5 equiv), 120 °C, 14 h]. After confirming the formation of acylation product 4aa by TLC, the subsequent acid-mediated Friedel–Crafts type cyclization was explored under various conditions (Table 1). Thus, the reaction mixture containing 4aa was reacted with concentrated H₂SO₄ (10.0 equiv) at room temperature for 3 hours. Unfortunately, no progress was observed and only the acylated product 4aa was isolated in 67% yield (Table 1, entry 1). Addition of DCE as second solvent along with the acid to the reaction mixture of 4aa did not show any progress (entry 2). Even AlCl₃ and TFOH could not promote the reaction, respectively (entries 3, 4). On the other hand, acylation reaction was performed in TBHP/H₂O and subsequently, the acylated product 4aa, was treated with concentrated H₂SO₄ at room temperature for 5 hours (entry 5). This attempt was also futile to furnish the product 3aa. Gratifyingly, trace amounts of anthraquinone 3aa and more amounts of transesterification products were observed when the cyclization was conducted in EtOH as solvent at 65 °C for 10 hours (entry 6). Formation of transesterification product could be attributed to the nucleophilic nature of EtOH. This preliminary progress encouraged us to search for more efficient conditions for this transformation. With the increased amount of acid and at slightly elevated temperature (75 °C) for 12 hours, the product 3aa was formed in 10% yield (entry 7). Replacing EtOH with non-nucleophilic and inert solvent (DCE) and with increased amount of concentrated H₂SO₄ (0.5 mL) at 60 °C for 3 hours, afforded the desired anthraquinone product 3aa in 55% yield (entry 8). Interestingly, further increasing the amount of acid, from 0.5 mL to 1.0 mL, increased the overall yield of the product 3aa to 62% (entry 9). However, no progress was observed when the reaction was conducted at room temperature (entry 10), while further increasing the amount of acid decreased the product 3aa yield to 46% (entry 11). This might be due to decomposition of product 3aa with excess amount of strong acid. Acylation in TBHP/decane and subsequent acid-mediated cyclization without additional solvent at 60 °C for 2 hours, gave 3aa in 42% yield (entry 12). On the other hand, by the addition of solvent DCE for the cyclization step, the product 3aa was accomplished in 50% yield (entry 13).

With the above optimized conditions (Table 1, entry 9), next, it was sought to investigate the scope of the method by exploring the reaction between methyl 2-iodobenzoate (1a) and other benzaldehydes 2. Gratifyingly, the process was feasible and furnished the desired anthraquinone products 3aa-ak (Scheme 2). The reaction was smooth with...
electron-releasing substituents on the aromatic ring of benzaldehydes 2a–d, 2j, and 2k (OMe, OEt, and -OCH₂O-). Remarkably, the protocol was also compatible with benzaldehydes 2f–i possessing free hydroxyl group (Scheme 2, 3af–ai). Significantly, the efficiency of the reaction was not impeded by ortho-substituents on the benzaldehyde moiety 2h (3ah). Notably, the reaction was also competent with highly electron-rich benzaldehyde 2k (i.e., trimethoxybenzaldehyde 3ak). However, it is worth noticing that in the case of para-methoxybenzaldehyde (2l), the expected product 3al was not formed. No progress of the desired cyclized product formation was observed even after 10 hours, however, with excess amount of concentrated H₂SO₄ (3.0 mL), complete decomposition of the reaction mixture took place. This may be attributed to the fact that the electron-releasing methoxy group is in meta relation to the reacting carbon of that aromatic ring and hence, could not promote the second acylation step. Notably, this observation is in good agreement to that of earlier report published by Hilt et al.9j

Furthermore, to demonstrate the applicability of the present protocol, next, we turned our attention to check the scope of the method by means of iodoester precursors 1. Therefore, the reaction was performed between various methyl 2-iodobenzoates 1b–d and benzaldehydes 2a–j. Gratifyingly, the reaction was also found suitable and furnished the products 3ba–da (Scheme 3). As anticipated, the reaction was successful with methyl substituted ortho-iodoester 1b with benzaldehydes 2a–j (Scheme 3, 3ba–bj). To our delight, this protocol was also found smooth to methyl 2-iodobenzoates 1c and 1d bearing electron-deactivating F and Br functional groups (Scheme 3, 3ca–da). Notably, anthraquinones 3ca–ci with bromo-substituent are of particular importance, as they can be further derivatized by means transition-metal-catalyzed coupling reactions.

In conclusion, a sequential one-pot relay process has been developed for the synthesis of diverse anthraquinones. The overall process involves a sequential dual acylation via [Pd]-catalyzed intermolecular acylation and acid mediated intramolecular Friedel–Crafts acylation. The key

Table 1 Screening Conditions for One-Pot Synthesis of Anthraquinone 3aa via the Keto Ester 4aa

<table>
<thead>
<tr>
<th>Entry</th>
<th>TBHP (5 equiv)</th>
<th>Acid (equiv or mL)</th>
<th>Solvent (2.0 mL)</th>
<th>Temp (°C)</th>
<th>Time (h)</th>
<th>Yield (%)b 3aa</th>
<th>Yield (%)b 4aa</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TBHP/decane</td>
<td>H₂SO₄ (10.0)</td>
<td>–</td>
<td>r.t.</td>
<td>3</td>
<td>–d</td>
<td>67</td>
</tr>
<tr>
<td>2</td>
<td>TBHP/decane</td>
<td>H₂SO₄ (10.0)</td>
<td>DCE</td>
<td>r.t.</td>
<td>3</td>
<td>–d</td>
<td>65</td>
</tr>
<tr>
<td>3</td>
<td>TBHP/decane</td>
<td>AlCl₃ (5.0)</td>
<td>DCE</td>
<td>r.t.</td>
<td>5</td>
<td>–d</td>
<td>62</td>
</tr>
<tr>
<td>4</td>
<td>TBHP/decane</td>
<td>TfOH (10.0)</td>
<td>DCE</td>
<td>r.t.</td>
<td>3</td>
<td>–d</td>
<td>60</td>
</tr>
<tr>
<td>5</td>
<td>TBHP/H₂O</td>
<td>H₂SO₄ (10.0)</td>
<td>r.t.</td>
<td>5</td>
<td>–d</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>TBHP/H₂O</td>
<td>H₂SO₄ (10.0)</td>
<td>EtOH</td>
<td>65</td>
<td>6</td>
<td>trace (3aa) + transesterification</td>
<td>–e</td>
</tr>
<tr>
<td>7</td>
<td>TBHP/H₂O</td>
<td>H₂SO₄ (0.5 mL)</td>
<td>EtOH</td>
<td>75</td>
<td>12</td>
<td>10% (3aa) + transesterification</td>
<td>–e</td>
</tr>
<tr>
<td>8</td>
<td>TBHP/H₂O</td>
<td>H₂SO₄ (0.5 mL)</td>
<td>DCE</td>
<td>60</td>
<td>3</td>
<td>55</td>
<td>–e</td>
</tr>
<tr>
<td>9</td>
<td>TBHP/H₂O</td>
<td>H₂SO₄ (1.0 mL)</td>
<td>DCE</td>
<td>60</td>
<td>2</td>
<td>62</td>
<td>–e</td>
</tr>
<tr>
<td>10</td>
<td>TBHP/H₂O</td>
<td>H₂SO₄ (1.0 mL)</td>
<td>DCE</td>
<td>60</td>
<td>5</td>
<td>–d</td>
<td>55</td>
</tr>
<tr>
<td>11</td>
<td>TBHP/H₂O</td>
<td>H₂SO₄ (2.0 mL)</td>
<td>DCE</td>
<td>60</td>
<td>1.5</td>
<td>46</td>
<td>–e</td>
</tr>
<tr>
<td>12</td>
<td>TBHP/decane</td>
<td>H₂SO₄ (1.0 mL)</td>
<td>–</td>
<td>60</td>
<td>2</td>
<td>42</td>
<td>–e</td>
</tr>
<tr>
<td>13</td>
<td>TBHP/decane</td>
<td>H₂SO₄ (1.0 mL)</td>
<td>DCE</td>
<td>60</td>
<td>2</td>
<td>50</td>
<td>–e</td>
</tr>
</tbody>
</table>

* Reaction was carried out with ortho-iodoester 1a (105.0 mg, 0.40 mmol) and aldehyde 2a (217.0 mg, 1.6 mmol).
* Chromatographically isolated yields of pure compounds.
* No second solvent was used.
* No 3aa was formed.
* No 4aa remained.
Scheme 2 Scope of the method for one-pot synthesis of anthraquinone 3aa–ak. Isolated yields of chromatographically pure products 3aa–ak are given. Product 3ai was not formed.

Scheme 3 Scope of one-pot synthesis of anthraquinone 3ba–da. Isolated yields of chromatographically pure products 3ba–da are given.
reaction of the coupling was [Pd]-catalyzed direct acylation between \textit{ortho}-iodoesters and aromatic aldehydes. Simple bench-top benzaldehydes served as nontoxic acylating surrogates.

IR spectra were recorded on a FTIR spectrophotometer. 1H NMR spectra were recorded on 400 MHz spectrometer at 295 K in CDCl$_3$; chemical shifts (δ ppm) and coupling constants (Hz) are reported in standard fashion with reference to either internal standard TMS (δ_{TMS} = 0.00) or CHCl$_3$ (δ_{CHCl_3} = 7.25). 13C NMR spectra were recorded on 100 MHz spectrometer at r.t. in CDCl$_3$; chemical shifts (δ ppm) are reported relative to CHCl$_3$ (δ_{CHCl_3} = 77.00 (central line of triplet)). In the 13C NMR spectra, the nature of carbons (C, CH, CH$_2$, and CH$_3$) were determined by recording the DEPT-135 spectra. In the 1H NMR, standard abbreviations were used throughout to denote the multiplicity of the signals. High-resolution mass spectra (HRMS) were recorded on Q-TOF electron spray ionization (ESI) mode and atmospheric pressure chemical ionization (APCI) modes. Melting points were determined on an electrothermal melting point apparatus and are uncorrected.

Al small scale reactions were carried out using Schlenk tube. Reactions were monitored by TLC on silica gel using a combination of hexane and EtOAc as eluents. Reactions were generally run under argon or N$_2$ atmosphere. Solvents were distilled prior to use; petroleum ether (PE) with a boiling range of 60–80 °C was used. Acme’s silica gel (60–120 mesh) was used for column chromatography (approximately 20 g per one gram of crude material).

2-Acetyl-2,3-dimethoxyanthracene-9,10-dione (3aa)

GP was carried out with ortho-iodoester 1a (105.0 mg, 0.40 mmol) and aldehyde 2b (240.0 mg, 1.6 mmol) in the presence of Pd(OAc)$_2$ (5.0 mg, 5 mol%), Ag$_2$O (111.3 mg, 0.48 mmol), and TBHP (257.1 mg, 2.0 mmol) by allowing the reaction mixture to stir at 120 °C for 12 h.

Progress of the reaction was monitored by TLC until the reaction was complete. The mixture was quenched by the addition of aq NaHCO$_3$ and then extracted with CH$_2$Cl$_2$ (3 × 15 mL). The combined organic layers were washed with brine, dried (Na$_2$SO$_4$), and filtered. Evaporation of the solvent under reduced pressure and purification of the crude material by silica gel column chromatography (PE/EtOAc) furnished the product 3aa; yield: 59.0 mg (62%); yellow solid, m.p. 194–196 °C; R_f^{1a} = 1.0, R_f(3aa) = 0.30 (PE/EtOAc 95:05); UV detection.

1H NMR (CDCl$_3$, 400 MHz): δ = 8.32–8.20 (m, 3 H, ArH), 7.84–7.72 (m, 2 H, ArH), 7.69 (d, J = 2.4 Hz, 1 H, ArH), 7.24 (dd, J = 8.8, 2.4 Hz, 1 H, ArH), 3.97 (s, 3 H).

13C NMR (CDCl$_3$, 100 MHz): δ = 183.2 (s, C=O), 182.1 (s, C=O), 164.3 (s, ArC), 135.6 (s, ArC), 134.1 (d, ArCH), 133.6 (s, ArC), 133.6 (d, ArCH), 133.5 (s, ArC), 129.7 (d, ArCH), 127.0 (s, ArC), 127.1 (d, 2 C, ArCH), 121.1 (d, ArCH), 109.9 (d, ArCH), 55.9 (q, CH$_3$).

2-Benzyloxy-2,3-dimethoxyanthracene-9,10-dione (3ab)

GP was carried out with ortho-iodoester 1a (105.0 mg, 0.40 mmol) and aldehyde 2a (217.0 mg, 1.6 mmol) in the presence of Pd(OAc)$_2$ (5.0 mg, 5 mol%), Ag$_2$O (111.3 mg, 0.48 mmol), and TBHP (257.1 mg, 2.0 mmol) by allowing the reaction mixture to stir at 120 °C for 12 h.

Progress of the reaction was monitored by TLC until the reaction was complete. The mixture was quenched by the addition of aq NaHCO$_3$ and then extracted with CH$_2$Cl$_2$ (3 × 15 mL). The combined organic layers were washed with brine, dried (Na$_2$SO$_4$), and filtered. Evaporation of the solvent under reduced pressure and purification of the crude material by silica gel column chromatography (PE/EtOAc) furnished the product 3ab; yield: 66.0 mg (65%); orange viscous liquid; R_f(1a) = 1.0, R_f(3ab) = 0.30 (PE/EtOAc 95:05); UV detection.

IR (MIR-ATR): 3071, 2941, 1712, 1683, 1611, 1465, 1287, 1099, 1006, 772, 721 cm$^{-1}$.

1H NMR (CDCl$_3$, 400 MHz): δ = 8.26–8.22 (m, 3 H, ArH), 7.80 (d, J = 8.8 Hz, 1 H, ArH), 7.75–7.72 (m, 2 H, ArH), 7.20 (dd, J = 8.5, 2.6 Hz, 1 H, ArH), 4.18 (q, J = 6.8 Hz, 2 H), 1.46 (t, J = 6.8 Hz, 3 H).

13C NMR (CDCl$_3$, 100 MHz): δ = 183.2 (s, C=O), 182.1 (s, C=O), 164.3 (s, ArC), 135.5 (s, ArC), 134.1 (d, ArCH), 133.6 (s, ArC), 133.6 (d, ArCH), 133.5 (s, ArC), 129.7 (d, ArCH), 127.0 (d, 2 C, ArCH), 126.8 (s, ArC), 121.4 (d, ArCH), 110.4 (d, ArCH), 64.3 (t, CH$_3$), 14.6 (q, CH$_3$).

HRMS (ESI$^+$): m/z [M + H]$^+$ calcd for [C$_{14}$H$_{15}$O$_3$]: 253.0859; found: 253.0859.

2,3-Dimethoxyanthracene-9,10-dione (3ac)

GP was carried out with ortho-iodoester 1a (105.0 mg, 0.40 mmol) and aldehyde 2c (265.0 mg, 1.6 mmol) in the presence of Pd(OAc)$_2$ (5.0 mg, 5 mol%), Ag$_2$O (111.3 mg, 0.48 mmol), and TBHP (257.1 mg, 2.0 mmol) by allowing the reaction mixture to stir at 120 °C for 14 h.

Progress of the reaction was monitored by TLC until the reaction was complete. The mixture was quenched by the addition of aq NaHCO$_3$ and then extracted with CH$_2$Cl$_2$ (3 × 15 mL). The combined organic layers were washed with brine, dried (Na$_2$SO$_4$), and filtered.
Evaporation of the solvent under reduced pressure and purification of the crude material by silica gel column chromatography (PE/EtOAc) furnished the product 3ac; yield: 73.0 mg (68%); orange solid, m.p. 230–233 °C; δ/1H (400 MHz) = 8.25 (dd, J = 5.8, 3.4 Hz, 2 H, ArH), 7.75 (dd, J = 5.8, 3.4 Hz, 2 H, ArH), 7.70 (s, 2 H, ArH), 4.29 (q, J = 6.8 Hz, 4 H), 1.53 (t, J = 6.8 Hz, 6 H).

11C NMR (CDCl3, 100 MHz): δ = 182.6 (s, 2 C, C=O), 153.4 (s, 2 C, ArC), 133.7 (d, 2 C, ArCH), 133.6 (d, 2 C, ArC), 128.2 (s, 2 C, ArC), 126.9 (d, 2 C, ArCH), 109.3 (d, 2 C, ArCH), 65.0 (s, 2 C, CH3). HRMS (ESI+): m/z [M + H]+ calcd for [C15H13O4]+: 297.1121; found: 297.1125.

2-Hydroxy-3-methoxyanthracene-9,10-dione (3af)

GP was carried out with ortho-idoester 1a (105.0 mg, 0.40 mmol) and aldehyde 2f (243.0 mg, 1.6 mmol) in the presence of Pd(OAc)2 (5.0 mg, 5 mol%), Ag2O (111.3 mg, 0.48 mmol), and TBHP (257.1 mg, 2.0 mmol) by allowing the reaction mixture to stir at 120 °C for 20 h. Progress of the reaction was monitored by TLC until the reaction was complete. The mixture was quenched by the addition of aq NaHCO3 and then extracted with CH2Cl2 (3 × 15 mL). The combined organic layers were washed with brine, dried (Na2SO4), and filtered. Evaporation of the solvent under reduced pressure and purification of the crude material by silica gel column chromatography (PE/EtOAc) furnished the product 3af; yield: 56.0 mg (55%); red solid, m.p. 252–254 °C; δ/1H (400 MHz) = 10.76 (s, 1 H, Ar–OH), 8.15–8.10 (m, 2 H, ArH), 7.59 (s, 1 H, ArH), 7.52 (s, 1 H, ArH), 3.96 (s, 3 H).

13C NMR (DMSO-d6, 100 MHz): δ = 218.8 (s, C=O), 181.4 (s, C=O), 152.8 (s, ArC), 132.0 (s, ArC), 128.0 (s, ArC), 126.5 (s, ArC), 126.5 (d, ArCH), 126.4 (d, ArCH), 112.4 (d, ArCH), 108.8 (d, ArCH), 56.0 (s, CH3). HRMS (ESI+): m/z [M + H]+ calcd for [C17H15O4]+: 255.0652; found: 255.0648.

2-Hydroxy-3-methoxyanthracene-9,10-dione (3af)

GP was carried out with ortho-idoester 1a (105.0 mg, 0.40 mmol) and aldehyde 2g (243.0 mg, 1.6 mmol) in the presence of Pd(OAc)2 (5.0 mg, 5 mol%), Ag2O (111.3 mg, 0.48 mmol), and TBHP (257.1 mg, 2.0 mmol) by allowing the reaction mixture to stir at 120 °C for 19 h. Progress of the reaction was monitored by TLC until the ortho-idoester 1a had completely reacted. Then the mixture was removed from the oil bath and allowed to reach r.t. DCE (2 mL) and concd H2SO4 (1.0 mL) were added and the mixture was stirred at 60 °C for 5 min. Progress of the product formation was monitored by TLC until the reaction was complete. The mixture was quenched by the addition of aq NaHCO3 and then extracted with CH2Cl2 (3 × 15 mL). The combined organic layers were washed with brine, dried (Na2SO4), and filtered. Evaporation of the solvent under reduced pressure and purification of the crude material by silica gel column chromatography (PE/EtOAc) furnished the product 3ag; yield: 59.0 mg (58%); red solid, m.p. 252–254 °C; δ/1H (400 MHz) = 10.76 (s, 1 H, Ar–OH), 8.15–8.10 (m, 2 H, ArH), 7.59 (s, 1 H, ArH), 7.52 (s, 1 H, ArH), 3.96 (s, 3 H).

13C NMR (DMSO-d6, 100 MHz): δ = 218.8 (s, C=O), 181.4 (s, C=O), 152.8 (s, ArC), 132.0 (s, ArC), 128.0 (s, ArC), 126.5 (s, ArC), 126.5 (d, ArCH), 126.4 (d, ArCH), 112.4 (d, ArCH), 108.8 (d, ArCH), 56.0 (s, CH3). HRMS (ESI+): m/z [M + H]+ calcd for [C17H15O4]+: 255.0652; found: 255.0652.

2,3-Diethoxyanthracene-9,10-dione (3ae)

GP was carried out with ortho-idoester 1a (105.0 mg, 0.40 mmol) and aldehyde 2e (310.0 mg, 1.6 mmol) in the presence of Pd(OAc)2 (5.0 mg, 5 mol%), Ag2O (111.3 mg, 0.48 mmol), and TBHP (257.1 mg, 2.0 mmol) by allowing the reaction mixture to stir at 120 °C for 14 h. Progress of the reaction was monitored by TLC until the ortho-idoester 1a had completely reacted. Then the mixture was removed from the oil bath and allowed to reach r.t. DCE (2 mL) and concd H2SO4 (1.0 mL) were added and the mixture was stirred at 60 °C for 2 h. Progress of the product formation was monitored by TLC until the reaction was complete. The mixture was quenched by the addition of aq NaHCO3 and then extracted with CH2Cl2 (3 × 15 mL). The combined organic layers were washed with brine, dried (Na2SO4), and filtered. Evaporation of the solvent under reduced pressure and purification of the crude material by silica gel column chromatography (PE/EtOAc) furnished the product 3ae; yield: 75.0 mg (63%); yellow solid, m.p. 247–248 °C; δ/1H (400 MHz) = 10.76 (s, 1 H, Ar–OH), 8.15–8.10 (m, 2 H, ArH), 7.59 (s, 1 H, ArH), 7.52 (s, 1 H, ArH), 3.96 (s, 3 H).

13C NMR (DMSO-d6, 100 MHz): δ = 218.8 (s, C=O), 181.4 (s, C=O), 152.8 (s, ArC), 132.0 (s, ArC), 128.0 (s, ArC), 126.5 (s, ArC), 126.5 (d, ArCH), 126.4 (d, ArCH), 112.4 (d, ArCH), 108.8 (d, ArCH), 56.0 (s, CH3). HRMS (ESI+): m/z [M + H]+ calcd for [C17H15O4]+: 255.0652; found: 255.0652.

2-Hydroxy-3-methoxyanthracene-9,10-dione (3af)

GP was carried out with ortho-idoester 1a (105.0 mg, 0.40 mmol) and aldehyde 2f (243.0 mg, 1.6 mmol) in the presence of Pd(OAc)2 (5.0 mg, 5 mol%), Ag2O (111.3 mg, 0.48 mmol), and TBHP (257.1 mg, 2.0 mmol) by allowing the reaction mixture to stir at 120 °C for 20 h. Progress of the reaction was monitored by TLC until the ortho-idoester 1a had completely reacted. Then the mixture was removed from the oil bath and allowed to reach r.t. DCE (2 mL) and concd H2SO4 (1.0 mL) were added and the mixture was stirred at 60 °C for 10 min. Progress of the product formation was monitored by TLC until the reaction was complete. The mixture was quenched by the addition of aq NaHCO3 and then extracted with CH2Cl2 (3 × 15 mL). The combined organic layers were washed with brine, dried (Na2SO4), and filtered. Evaporation of the solvent under reduced pressure and purification of the crude material by silica gel column chromatography (PE/EtOAc) furnished the product 3af; yield: 59.0 mg (58%); red solid, m.p. 252–254 °C; δ/1H (400 MHz) = 10.76 (s, 1 H, Ar–OH), 8.15–8.10 (m, 2 H, ArH), 7.59 (s, 1 H, ArH), 7.52 (s, 1 H, ArH), 3.96 (s, 3 H).

13C NMR (DMSO-d6, 100 MHz): δ = 218.8 (s, C=O), 181.4 (s, C=O), 152.8 (s, ArC), 132.0 (s, ArC), 128.0 (s, ArC), 126.5 (s, ArC), 126.5 (d, ArCH), 126.4 (d, ArCH), 112.4 (d, ArCH), 108.8 (d, ArCH), 56.0 (s, CH3). HRMS (ESI+): m/z [M + H]+ calcd for [C17H15O4]+: 255.0652; found: 255.0652.
1H NMR (DMSO-d6, 400 MHz): δ = 10.76 (s, 1 H, Ar-OH), 8.15–8.10 (m, 2 H, ArH), 7.86–7.84 (m, 2 H, ArH), 7.79 (s, 1 H, ArH), 7.52 (s, 1 H, ArH), 3.96 (s, 3 H).

13C NMR (DMSO-d6, 100 MHz): δ = 182.7 (s, C=O), 181.2 (s, C=O), 163.1 (s, ArC), 151.2 (s, ArC), 139.4 (d, ArCH), 134.0 (d, ArCH), 130.0 (s, ArC), 133.1 (s, ArC), 129.2 (d, ArCH), 126.7 (d, ArCH), 126.6 (d, ArCH), 125.2 (s, ArC), 121.6 (d, ArCH), 112.2 (d, ArCH).

IR (MIR-ATR): 3070, 1701, 1688, 1642, 1619, 1583, 1575, 1432 (d, ArCH), 116.1 (s, ArC), 115.8 (d, ArCH), 56.4 (q, CH3).

1-Hydroxy-2-methoxyanthracene-9,10-dione (3ah)

GP was carried out with ortho-iodoester 1a (105.0 mg, 0.40 mmol) and aldehyde 2h (243.0 mg, 1.6 mmol) in the presence of Pd(OAc)2 (5.0 mg, 5 mol%), Ag2O (111.3 mg, 0.48 mmol), and TBHP (257.1 mg, 2.0 mmol) by allowing the reaction mixture to stir at 120 °C for 17 h. Progress of the reaction was monitored by TLC until the ortho-iodoester 1a had completely reacted. The mixture was removed from the oil bath and allowed to reach r.t. DCE (2 mL) and concd H2SO4 (1.0 mL) were added and the mixture was stirred at 60 °C for 20 min. Progress of the product formation was monitored by TLC until the reaction was complete. The mixture was quenched by the addition of aq NaHCO3 and then extracted with CH2Cl2 (3 × 15 mL). The combined organic layers were washed with brine, dried (Na2SO4), and filtered. Evaporation of the solvent under reduced pressure and purification of the crude material by silica gel column chromatography (PE/EtOAc furnished the product 3ah): yield: 64.0 mg (63%); yellow viscous liquid; Rf (1a) = 1.0, Rf (3ah) = 0.30 (PE/EtOAc 90:10), UV detection.

1H NMR (CDCl3, 400 MHz): δ = 8.32–8.20 (m, 2 H, ArH), 7.80–7.50 (m, 2 H, ArH), 7.66 (s, 2 H, ArH), 6.15 (s, 2 H).

1-C NMR (CDCl3, 100 MHz): δ = 182.0 (2 s, C=O), 152.6 (s, 2 ArC), 133.8 (2 s, 2 ArC), 133.3 (s, 2 ArC), 127.1 (2 s, 2 ArC), 106.4 (d, 2 C, ArCH), 102.6 (t, CH3).

Anthr[2,3-d][1,3]dioxole-5,10-dione (3aj)

GP was carried out with ortho-iodoester 1a (105.0 mg, 0.40 mmol) and aldehyde 2j (240.0 mg, 1.6 mmol) in the presence of Pd(OAc)2 (5.0 mg, 5 mol%), Ag2O (111.3 mg, 0.48 mmol), and TBHP (257.1 mg, 2.0 mmol) by allowing the reaction mixture to stir at 120 °C for 17 h. Progress of the reaction was monitored by TLC until the ortho-iodoester 1a had completely reacted. Then the mixture was removed from the oil bath and allowed to reach r.t. DCE (2 mL) and concd H2SO4 (1.0 mL) were added and the mixture was stirred at 60 °C for 1.5 h. Progress of the product formation was monitored by TLC until the reaction was complete. The mixture was quenched by the addition of aq NaHCO3 and then extracted with CH2Cl2 (3 × 15 mL). The combined organic layers were washed with brine, dried (Na2SO4), and filtered. Evaporation of the solvent under reduced pressure and purification of the crude material by silica gel column chromatography (PE/EtOAc furnished the product 3aj): yield: 64.0 mg (63%); yellow viscous liquid; Rf (1a) = 1.0, Rf (3aj) = 0.30 (PE/EtOAc 90:10), UV detection.

1H NMR (CDCl3, 400 MHz): δ = 8.32–8.20 (m, 2 H, ArH), 7.80–7.50 (m, 2 H, ArH), 7.66 (s, 2 H, ArH), 6.15 (s, 2 H).

1-C NMR (CDCl3, 100 MHz): δ = 182.0 (2 s, C=O), 152.6 (s, 2 ArC), 133.8 (2 s, 2 ArC), 133.3 (s, 2 ArC), 127.1 (2 s, 2 ArC), 106.4 (d, 2 C, ArCH), 102.6 (t, CH3).

1,2,3-Trimethoxynaphthalene-9,10-dione (3ak)

GP was carried out with ortho-iodoester 1a (105.0 mg, 0.40 mmol) and aldehyde 2k (313.0 mg, 1.6 mmol) in the presence of Pd(OAc)2 (5.0 mg, 5 mol%), Ag2O (111.3 mg, 0.48 mmol), and TBHP (257.1 mg, 2.0 mmol) by allowing the reaction mixture to stir at 120 °C for 14 h. Progress of the reaction was monitored by TLC until the ortho-iodoester 1a had completely reacted. Then the mixture was removed from the oil bath and allowed to reach r.t. DCE (2 mL) and concd H2SO4 (1.0 mL) were added and the mixture was stirred at 60 °C for 2 h. Progress of the product formation was monitored by TLC until the reaction was complete. The mixture was quenched by the addition of aq NaHCO3 and then extracted with CH2Cl2 (3 × 15 mL). The combined organic layers were washed with brine, dried (Na2SO4), and filtered. Evaporation of the solvent under reduced pressure and purification of the crude material by silica gel column chromatography (PE/EtOAc furnished the product 3ak): yield: 73.0 mg (61%); red solid, m.p. 165–167 °C; Rf (1a) = 1.0, Rf (3ak) = 0.30 (PE/EtOAc 70:30), UV detection.

1H NMR (CDCl3, 400 MHz): δ = 8.25 (dd, J = 7.8, 1.7 Hz, 1 H, ArH), 8.22 (dd, J = 7.8, 2.4 Hz, 1 H, ArH), 7.77 (dd, J = 7.8, 7.8, 2.4 Hz, 1 H, ArH), 7.73 (dd, J = 7.8, 7.8, 1.7 Hz, 1 H, ArH), 7.67 (s, 1 H, ArH), 4.03 (s, 3 H), 3.99 (s, 3 H), 3.98 (s, 3 H).

1-C NMR (CDCl3, 100 MHz): δ = 182.7 (s, C=O), 181.5 (s, C=O), 157.5 (s, ArC), 154.8 (s, ArC), 148.4 (s, ArC), 134.9 (s, ArC), 134.1 (d, ArCH), 133.1 (d, ArCH), 132.5 (s, ArC), 130.8 (s, ArC), 127.0 (d, ArCH), 126.6 (d, ArCH), 121.3 (s, ArC), 106.4 (d, ArCH), 61.6 (q, CH3), 61.3 (q, CH3), 56.4 (q, CH3).

2-Methoxy-6-methylnaphthalene-9,10-dione (3ba)

GP was carried out with ortho-iodoester 1b (110.0 mg, 0.40 mmol) and aldehyde 2a (217.0 mg, 1.6 mmol) in the presence of Pd(OAc)2 (5.0 mg, 5 mol%), Ag2O (111.3 mg, 0.48 mmol), and TBHP (257.1 mg, 2.0 mmol) by allowing the reaction mixture to stir at 120 °C for 14 h.
Progress of the reaction was monitored by TLC until the ortho-iodoester 1a had completely reacted. Then the mixture was removed from the oil bath and allowed to reach r.t. DCE (2 mL) and concd H2SO4 (1.0 mL) were added and the mixture was stirred at 60 °C for 2 h. Progress of the product formation was monitored by TLC until the reaction was complete. The mixture was quenched by the addition of aq NaHCO3 and then extracted with CH2Cl2 (3 × 15 mL). The combined organic layers were washed with brine, dried (Na2SO4), and filtered. Evaporation of the solvent under reduced pressure and purification of the crude material by silica gel column chromatography (PE/EtOAc) furnished the product 3ba: yield: 65.0 mg (64%); yellow solid, m.p. 192–194 °C; Rf(1a) = 1.0, Rf(3ba) = 0.30 (PE/EtOAc 95:05), UV detection.

1H NMR (CDCl3, 400 MHz): δ = 8.15 (d, J = 7.8 Hz, 1 H, ArH), 7.99 (s, 1 H, ArH), 7.63 (d, J = 2.4 Hz, 1 H, ArH), 7.49 (dd, J = 7.8, 1.2 Hz, 1 H, ArH), 7.18 (dd, J = 8.3, 2.4 Hz, 1 H, ArH), 3.93 (s, 3 H), 2.47 (s, 3 H).

13C NMR (CDCl3, 100 MHz): δ = 182.9 (s, C=O), 182.2 (s, C=O), 164.2 (s, ArC), 145.2 (s, ArC), 135.5 (s, ArC), 134.3 (d, ArCH), 133.4 (s, ArC), 131.2 (s, ArC), 129.9 (d, ArCH), 127.3 (d, ArCH), 127.2 (d, ArCH), 127.0 (s, ArC), 120.8 (d, ArCH), 109.8 (d, ArCH), 55.6 (q, CH3), 21.8 (q, CH3).

2.3-Diethoxy-6-methylanthracene-9,10-dione (3be)

GP was carried out with ortho-iodoester 1b (110.0 mg, 0.40 mmol) and aldehyde 2b (240.0 mg, 1.6 mmol) in the presence of Pd(OAc)2 (5.0 mg, 5 mol%), Ag2O (111.3 mg, 0.48 mmol), and TBHP (257.1 mg, 2.0 mmol) by allowing the reaction mixture to stir at 120 °C for 18 h. Progress of the reaction was monitored by TLC until the ortho-iodoester 1b had completely reacted. Then the mixture was removed from the oil bath and allowed to reach r.t. DCE (2 mL) and concd H2SO4 (1.0 mL) were added and the mixture was stirred at 60 °C for 30 min. Progress of the product formation was monitored by TLC until the reaction was complete. The mixture was quenched by the addition of aq NaHCO3 and then extracted with CH2Cl2 (3 × 15 mL). The combined organic layers were washed with brine, dried (Na2SO4), and filtered. Evaporation of the solvent under reduced pressure and purification of the crude material by silica gel column chromatography (PE/EtOAc) furnished the product 3be: yield: 76.0 mg (61%); yellow viscous liquid; Rf(1b) = 1.0, Rf(3be) = 0.30 (PE/EtOAc 95:05), UV detection.

1H NMR (CDCl3, 400 MHz): δ = 8.11 (d, J = 7.8 Hz, 1 H, ArH), 8.01 (s, 1 H, ArH), 7.65 (s, 1 H, ArH), 7.64 (s, 1 H, ArH), 7.51 (dd, J = 7.8, 0.9 Hz, 1 H, ArH), 4.03 (s, 6 H), 2.49 (s, 3 H).

13C NMR (CDCl3, 100 MHz): δ = 182.7 (s, C=O), 182.3 (s, C=O), 153.7 (s, ArC), 153.6 (s, ArC), 144.7 (s, ArC), 134.4 (d, ArCH), 133.4 (s, ArC), 131.3 (s, ArC), 128.5 (s, ArC), 128.4 (s, ArC), 127.8 (d, ArCH), 127.2 (d, ArCH), 108.3 (d, ArCH), 108.2 (d, ArCH), 56.5 (q, 2 C, CH3), 21.8 (q, CH3).

7-Methylanthra[2,3-d][1,3]dioxole-5,10-dione (3bj)

GP was carried out with ortho-iodoester 1b (110.0 mg, 0.40 mmol) and aldehyde 2e (310.0 mg, 1.6 mmol) in the presence of Pd(OAc)2 (5.0 mg, 5 mol%), Ag2O (111.3 mg, 0.48 mmol), and TBHP (257.1 mg, 2.0 mmol) by allowing the reaction mixture to stir at 120 °C for 17 h. Progress of the reaction was monitored by TLC until the ortho-iodoester 1a had completely reacted. Then the mixture was removed from the oil bath and allowed to reach r.t. DCE (2 mL) and concd H2SO4 (1.0 mL) were added and the mixture was stirred at 60 °C for 1 h. Progress of the product formation was monitored by TLC until the reaction was complete. The mixture was quenched by the addition of aq NaHCO3 and then extracted with CH2Cl2 (3 × 15 mL). The combined organic layers were washed with brine, dried (Na2SO4), and filtered. Evaporation of the solvent under reduced pressure and purification of the crude material by silica gel column chromatography (PE/EtOAc) furnished the product 3bc: yield: 75.0 mg (66%); yellow viscous liquid; Rf(1b) = 1.0, Rf(3bc) = 0.30 (PE/EtOAc 85:15), UV detection.

2-Bromo-6-methoxyanthracene-9,10-dione (3ca)

GP was carried out with ortho-iodoester 1c (136.0 mg, 0.40 mmol) and aldehyde 2a (217.0 mg, 1.6 mmol) in the presence of Pd(OAc)2 (5.0 mg, 0.05 mol%), Ag2O (111.3 mg, 0.48 mmol), and TBHP (257.1 mg, 2.0 mmol) by allowing the reaction mixture to stir at 120 °C for 14 h.

Progress of the reaction was monitored by TLC until the preparation had completely reacted. Then the mixture was removed from the oil bath and allowed to reach r.t. and concd H2SO4 (2 mL) were added and the mixture was stirred at 60 °C for 2 h.

Progress of the product formation was monitored by TLC until the reaction was complete. The mixture was quenched by the addition ofaq NaHCO3 and then extracted with CH2Cl2 (3 × 15 mL). The combined organic layers were washed with brine, dried (Na2SO4), and filtered. Evaporation of the solvent under reduced pressure and purification of the crude material by silica gel column chromatography (PE/EtOAc) furnished the product 3ca; yield: 141.3 mg (92%); yellow solid, m.p. 131.1–132.5 °C; Rf (PE/EtOAc 10:90) = 1.0, Rf (PE/EtOAc 90:10) = 0.30 (UV detection).

1H NMR (CDCl3, 400 MHz): δ = 8.40 (d, J = 1.9 Hz, 1 H, ArH), 8.23 (d, J = 8.8 Hz, 1 H, ArH), 8.12 (d, J = 8.3 Hz, 1 H, ArH), 8.86 (dd, J = 8.3, 2.4 Hz, 1 H, ArH), 7.70 (d, J = 2.4 Hz, 1 H, ArH), 7.28–7.26 (m, 1 H, ArH), 3.98 (s, 3 H, OCH3).

13C NMR (CDCl3, 100 MHz): δ = 182.5 (s, C=O), 180.9 (s, C=O), 164.6 (s, ArC), 136.7 (d, ArCH), 135.4 (s, ArC), 134.7 (s, ArC), 132.1 (s, ArC), 130.2 (d, ArCH), 129.9 (s, ArC), 128.9 (d, ArCH), 126.7 (s, ArC), 121.3 (d, ArCH), 110.1 (d, ArCH), 56.0 (q, CH3).

2-Bromo-6-ethoxyanthracene-9,10-dione (3cb)

GP was carried out with ortho-iodoester 1c (136.0 mg, 0.40 mmol) and aldehyde 2b (240.0 mg, 1.6 mmol) in the presence of Pd(OAc)2 (5.0 mg, 0.05 mol%), Ag2O (111.3 mg, 0.48 mmol), and TBHP (257.1 mg, 2.0 mmol) by allowing the reaction mixture to stir at 120 °C for 14 h.

Progress of the reaction was monitored by TLC until the ortho-iodoester 1c had completely reacted. Then the mixture was removed from the oil bath and allowed to reach r.t. DCE (2 mL) and concd H2SO4 (1.0 mL) were added and the mixture was stirred at 60 °C for 2 h.

Progress of the product formation was monitored by TLC until the reaction was complete. The mixture was quenched by the addition ofaq NaHCO3 and then extracted with CH2Cl2 (3 × 15 mL). The combined organic layers were washed with brine, dried (Na2SO4), and filtered. Evaporation of the solvent under reduced pressure and purification of the crude material by silica gel column chromatography (PE/EtOAc) furnished the product 3cb; yield: 86.0 mg (65%); red solid, m.p. 202–203 °C; Rf (1b) = 1.0, Rf (3cb) = 0.30 (PE/EtOAc 95:05), UV detection.

7-Bromo-1-hydroxyanthracene-9,10-dione (3ci)

GP was carried out with ortho-iodoester 1c (136.0 mg, 0.40 mmol) and aldehyde 2i (195.0 mg, 1.6 mmol) in the presence of Pd(OAc)2 (5.0 mg, 0.05 mol%), Ag2O (111.3 mg, 0.48 mmol), and TBHP (257.1 mg, 2.0 mmol) by allowing the reaction mixture to stir at 120 °C for 14 h.

Progress of the reaction was monitored by TLC until the ortho-iodoester 1c had completely reacted. Then the mixture was removed from the oil bath and allowed to reach r.t. DCE (2 mL) and concd H2SO4 (1.0 mL) were added and the mixture was stirred at 60 °C for 2 h.

Progress of the product formation was monitored by TLC until the reaction was complete. The mixture was quenched by the addition ofaq NaHCO3 and then extracted with CH2Cl2 (3 × 15 mL). The combined organic layers were washed with brine, dried (Na2SO4), and filtered. Evaporation of the solvent under reduced pressure and purification of the crude material by silica gel column chromatography (PE/EtOAc) furnished the product 3ci; yield: 79.0 mg (62%); yellow solid, m.p. 203 °C; Rf (PE/EtOAc 80:20) = 1.0, Rf (PE/EtOAc 95:05) = 0.30 (UV detection).

1H NMR (CDCl3, 400 MHz): δ = 8.40 (d, J = 1.9 Hz, 1 H, ArH), 8.22 (d, J = 8.3 Hz, 1 H, ArH), 8.12 (d, J = 8.3 Hz, 1 H, ArH), 8.86 (dd, J = 8.0, 2.2 Hz, 1 H, ArH), 7.67 (d, J = 2.9 Hz, 1 H, ArH), 7.26–7.23 (m, 1 H, ArH), 4.21 (q, J = 7.0 Hz, 2 H), 1.48 (t, J = 7.0 Hz, 3 H).

1C NMR (CDCl3, 100 MHz): δ = 182.5 (s, C=O), 180.9 (s, C=O), 164.0 (s, ArC), 136.6 (d, ArCH), 135.4 (s, ArC), 134.8 (s, ArC), 132.2 (s, ArC), 130.2 (d, ArCH), 129.9 (d, ArCH), 128.9 (s, ArC), 128.9 (d, ArCH), 126.5 (s, ArC), 121.6 (d, ArCH), 110.6 (d, ArCH), 64.5 (t, CH3), 14.6 (q, CH3).

the crude material by silica gel column chromatography (PE/ EtOAc) furnished the product 3ci; yield: 71.0 mg (59%); red solid, m.p. 227–230 °C; Rf (1c) = 1.0, Rf (3ci) = 0.30 (PE/EtOAc 80:20), UV detection. IR (MIR-ATR): 3071, 2928, 1711, 1689, 1622, 1462, 1285, 1181, 914, 715 cm–1.

| HRMS (ESI +): | 113.8 (d, | ArCH |), 127.0 (s, | ArC |), 121.1 (d, | ArCH |), 129.9 (d, | ArCH |), 124.6 (d, | ArCH |), 119.8 (d, | ArCH |), 115.9 (s, | ArC |). |
| HRMS (ESI+): | 132.2 (s, | ArC |), 129.9 (d, | ArCH |), 129.8 (s, | ArC |), 129.1 (d, | ArCH |), 124.6 (d, | ArCH |), 119.8 (d, | ArCH |), 115.9 (s, | ArC |). |

2-Fluoro-6-methoxyanthracene-9,10-dione (3a)

GP was carried out with ortho-iodoester 1d (112.0 mg, 0.40 mmol) and aldehyde 2a (217.0 mg, 1.6 mmol) in the presence of Pd(OAc)2 (5.0 mg, 5 mol%), Ag2O (111.3 mg, 0.48 mmol), and TBHP (257.1 mg, 5.0 mg, 0.40 mmol) were added and the mixture was stirred at 60 °C for 2 h. Progress of the reaction was monitored by TLC until the reaction was complete. The mixture was quenched by the addition of aq (1.0 mL) were added and the mixture was stirred at 60 °C for 2 h. DCE (2 mL) and concd H2SO4 (1.0 mL) were added, and the mixture was stirred at 60 °C for 2 h. Progress of the reaction was monitored by TLC until the reaction was complete. The mixture was quenched by the addition of aq NaHCO3 and then extracted with CH2Cl2 (× 15 mL). The combined organic layers were washed with brine, dried (Na2SO4), and filtered. Evaporation of the solvent under reduced pressure and purification of the crude material by silica gel column chromatography furnished the product 3a; yield: 65.0 mg (63%); yellow viscous liquid; Rf (1d) = 1.0, Rf (3a) = 0.30 (PE/EtOAc 95:05), UV detection. IR (MIR-ATR): 3071, 2928, 1711, 1689, 1622, 1246, 1285, 1181, 914, 715 cm–1.

| HRMS (ESI+): | 1d (s, | C=O |), 187.4 (s, | C=O |), 162.6 (s, | C=O |), 157.6 (s, | C=O |), 135.4 (d, | C=O |), 105.5 (s, | C=O |), 75.0 (s, | C=O |). |
| HRMS (ESI+): | 1d (s, | C=O |), 187.4 (s, | C=O |), 162.6 (s, | C=O |), 157.6 (s, | C=O |), 135.4 (d, | C=O |), 105.5 (s, | C=O |), 75.0 (s, | C=O |). |

Funding Information

We are grateful to the Department of Science and Technology-Science and Engineering Research Board (DST-SERB) [NO: SB/S1/OC-39/2014], New Delhi, for the financial support. S.B. thanks MHRD for the award of a research fellowship.

Supporting Information

Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1610296.

References

