Synlett 2018; 29(15): 1978-1982
DOI: 10.1055/s-0037-1610258
letter
© Georg Thieme Verlag Stuttgart · New York

Synthesis of Polycyclic Frameworks through Iron-Catalyzed Intramolecular [5+2] Cycloaddition

Yongjiang Liu
Key Laboratory of Green Chemistry &Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. of China   Email: chembliu@scu.edu.cn   Email: fsm09@aliyun.com
,
Yanhui Zhang
Key Laboratory of Green Chemistry &Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. of China   Email: chembliu@scu.edu.cn   Email: fsm09@aliyun.com
,
Xiao Wang
Key Laboratory of Green Chemistry &Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. of China   Email: chembliu@scu.edu.cn   Email: fsm09@aliyun.com
,
Shaomin Fu*
Key Laboratory of Green Chemistry &Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. of China   Email: chembliu@scu.edu.cn   Email: fsm09@aliyun.com
,
Bo Liu  *
Key Laboratory of Green Chemistry &Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. of China   Email: chembliu@scu.edu.cn   Email: fsm09@aliyun.com
› Author Affiliations
We acknowledge financial support from the NSFC (21672153).
Further Information

Publication History

Received: 08 July 2018

Accepted after revision: 26 July 2018

Publication Date:
23 August 2018 (online)


Abstract

A concise and efficient approach to the core of the C18/C19 diterpenoid alkaloids and phomopsterone B is reported. Both syntheses share the same iron-catalyzed intramolecular [5+2] cycloaddition to assemble the tricyclo[6.3.1.01,6]]dodecane skeleton. The following ­approach to the 6/5/6/7 tetracyclic core scaffold of C18/C19 diterpenoid alkaloids features a regioselective Grignard addition/thermal Claisen rearrangement/RCM cyclization. Meanwhile the synthetic steps to access the spiro 6/5/6 tricyclic subunits of phomopsterone B were characterized as intramolecular aldol reaction, Wacker oxidation, and Criegee ­reaction.

Supporting Information

 
  • References and Notes

  • 1 Wang F.-P. Chen Q.-H. Liang X.-T. In The Alkaloids: Chemistry and Biology . Vol. 67. Cordell GA. Elsevier Science; New York: 2009: 1-78
    • 2a Wang F.-P. Chen Q.-H.. in The Alkaloids: Chemistry and Biology . Vol. 69. Cordell GA. Elsevier Science; New York: 2010: 1-577
    • 2b Guo R. Guo C. He D. Zhao D. Shen Y. Chin. J. Chem. 2017; 35: 1644
    • 3a Usmanova SK. Tel’nov VA. Yunusov MS. Abdullaev ND. Shreter AI. Filippova GB. Khim. Prir. Soedin. 1987; 23: 879
    • 3b Tel’nov VA. Yunusov MS. Abdullaev ND. Zhamierashvili MG. Khim. Prir. Soedin. 1988; 24: 556
    • 3c Shi X.-W. Lu Q.-Q. Zhou J.-H. Cui X.-A. Acta Cryst. 2015; E71: 550
  • 4 Dzhakhangirov FN. Sultankhodzhaev MN. Tashkhodzhaev B. Salimov BT. Chem. Nat. Compd. 1997; 33: 190
  • 5 Zhang HQ. Zhu YL. Zhu RH. Acta Bot. Sin. 1982; 24: 259
    • 6a Wiesner K. Tsai TY. R. Huber K. Bolton SE. Vlahov R. J. Am. Chem. Soc. 1974; 96: 4990
    • 6b Wiesner K. Pure Appl. Chem. 1975; 41: 93
    • 6c Wiesner K. Tsai TY. R. Nambiar KP. Can. J. Chem. 1978; 56: 1451
    • 6d Wiesner K. Pure Appl. Chem. 1979; 51: 689
  • 7 Shi Y. Wilmot JT. Nordstrøm LU. Tan DS. Gin DY. J. Am. Chem. Soc. 2013; 135: 14313
    • 8a Marth CJ. Gallego GM. Lee JC. Lebold TP. Kulyk S. Kou KG. M. Qin J. Lilien R. Sarpong R. Nature 2015; 528: 493
    • 8b Kou KG. M. Kulyk S. Marth CJ. Lee JC. Doering NA. Li BX. Gallego GM. Lebold TP. Sarpong R. J. Am. Chem. Soc. 2017; 139: 13882
    • 9a Nishiyama Y. Yokoshima S. Fukuyama T. Org. Lett. 2016; 18: 2359
    • 9b Nishiyama Y. Yokoshima S. Fukuyama T. Org. Lett. 2017; 19: 5833

      For recent review articles, see:
    • 10a Wang F.-P. Chen Q.-H. Liu X.-Y. Nat. Prod. Rep. 2010; 27: 529
    • 10b Hamlin AM. Kisunzu JK. Sarpong R. Org. Biomol. Chem. 2014; 12: 1846
    • 10c Zhu G. Liu R. Liu B. Synthesis 2015; 47: 2691
    • 10d Liu X.-Y. Qin Y. Asian J. Org. Chem. 2015; 4: 1010

      For selected research work published recently, see:
    • 11a Mei R.-H. Liu Z.-G. Cheng H. Xu L. Wang F.-P. Org. Lett. 2013; 15: 2206
    • 11b Cheng H. Zeng F.-H. Ma D. Jiang M.-L. Xu L. Wang F.-P. Org. Lett. 2014; 16: 2299
    • 11c Jiang M.-L. Meng Y.-J. Xiong W.-Y. Xu L. Tetrahedron Lett. 2016; 57: 1610
    • 11d Tabuchi T. Urabe D. Inoue M. J. Org. Chem. 2016; 81: 10204
    • 11e Hagiwara K. Tabuchi T. Urabe D. Inoue M. Chem. Sci. 2016; 7: 4372
    • 11f Zhu M. Li X. Song X. Wang Z. Liu X. Song H. Zhang D. Wang F.-P. Qin Y. Chin. J. Chem. 2017; 35: 991
    • 11g Minagawa K. Urabe D. Inoue M. J. Antibiot. 2018; 71: 326
    • 11h Liu M. Cheng C. Xiong W. Cheng H. Wang J.-L. Xu L. Org. Chem. Front. 2018; 5: 1502
    • 12a Hu Z. Wu Y. Xie S. Sun W. Guo Y. Li X.-N. Liu J. Li H. Wang J. Luo Z. Xue Y. Zhang Y. Org. Lett. 2017; 19: 258
    • 12b Amagata T. Tanaka M. Yamada T. Doi M. Minoura K. Ohishi H. Yamori T. Numata A. J. Nat. Prod. 2007; 70: 1731
    • 13a Janardhanam S. Shanmugam P. Rajagopalan K. J. Org. Chem. 1993; 58: 7782
    • 13b Shanmugam P. Srinivasan R. Rajagopalan K. Tetrahedron 1997; 53: 6085
  • 14 Matsuo J. Sasaki S. Hoshikawa T. Ishibashi H. Chem. Commun. 2010; 934
  • 15 Rinderhagen H. Mattay J. Chem. Eur. J. 2004; 10: 851
  • 16 Liu Y. Wang X. Chen S. Fu S. Liu B. Org. Lett. 2018; 20: 2934
  • 17 Nicolaou KC. Dong L. Deng L. Talbot AC. Chen DY.-K. Chem. Commun. 2010; 70
    • 18a Hanessian S. Vakiti RR. Dorich S. Banerjee S. Lecomte F. DelValle JR. Zhang J. Deschênes-Simard B. Angew. Chem. Int. Ed. 2011; 50: 3497
    • 18b Hanessian S. Vakiti RR. Dorich S. Banerjee S. Lecomte Deschênes-Simard B. J. Org. Chem. 2012; 77: 9458
  • 19 We also tried to construct the 6/5/6/5 tetracyclic core skeleton of the C18/C19-diterpenoid alkaloids, but failed (Scheme 5).
  • 20 Reduction of compound 10 under LiAlH4 gave two diastereo­isomers, 20-1 and 20-2 in 49% yield and 24% yield, respectively. Compound 20-1 was further transformed into compound 20, the structure of which was confirmed by X-ray crystallography. The stereochemistry of hydroxyl group at C1 in target compound 11 could be identified from X-ray crystallographic analysis of compound 20 (Scheme 6).
  • 21 Shen J. Shi Y. Tian W. Chin. J. Chem. 2015; 33: 683
  • 22 Experimental Procedure and Characteristic Data for Ketone (24): Compound 21 (22.3 mg, 0.08 mmol) was added to toluene (0.5 mL) in a sealed tube and stirred at 170 °C overnight. The solvent was then removed in vacuo to afford the crude product, which was used in the next step without further purification. To a solution of Grubbs II (17.5 mg, 0.02 mmol) in CH2Cl2 (8.0 mL) at room temperature was added the above product in CH2Cl2 (2.5 mL) and the mixture was stirred at room temperature for 10 h. The solvent was then removed in vacuo and the crude product was purified by column chromatography (EtOAc/petroleum ether = 1:5) to afford the product 24 (12.1 mg, 60% for two steps) as a white solid; mp 119–121 °C. 1H NMR (400 MHz, CDCl3): δ = 5.65–5.59 (m, 2 H), 3.87 (s, 1 H), 2.88 (t, J = 5.2 Hz, 1 H), 2.73–2.60 (m, 2 H), 2.46 (dd, J = 5.2, 7.2 Hz, 1 H), 2.04–1.98 (m, 2 H), 1.90–1.81 (m, 2 H), 1.70 (dd, J = 5.2, 13.2 Hz, 1 H), 1.66–1.59 (m, 1 H), 1.52–1.47 (m, 1 H), 1.42 (ddd, J = 2.8, 7.6, 14.0 Hz, 1 H), 1.15 (dddd, J = 2.8, 4.0, 12.4, 25.2 Hz, 1 H), 1.03 (ddt, J = 2.8, 12.8, 25.6 Hz, 1 H), 0.72 (ddd, J = 3.2, 13.2, 25.6 Hz, 1 H). 13C NMR (100 MHz, CDCl3): δ = 211.8, 211.0, 132.7, 127.9, 78.9, 60.5, 50.6, 48.5, 35.2, 34.8, 31.6, 30.6, 24.0, 22.7, 20.6. IR (neat): 2925, 2850, 1735, 1448, 1369, 1239, 1141, 1030 cm–1. HRMS (ESI): m/z [M+Na]+ calcd for C15H18NaO3: 269.1154; found: 269.1151.