Synlett 2018; 29(15): 2031-2034
DOI: 10.1055/s-0037-1610227
letter
© Georg Thieme Verlag Stuttgart · New York

Synthesis of Unnatural Arundines Using a Magnetically Reusable Copper Ferrite Catalyst

Pha T. Ha
Faculty of Chemical Engineering, HCMC University of Technology, VNU-HCM, 268 Ly Thuong Kiet, District 10, Ho Chi Minh City, Vietnam   Email: ptsnam@hcmut.edu.vn
,
Oanh T. K. Nguyen
Faculty of Chemical Engineering, HCMC University of Technology, VNU-HCM, 268 Ly Thuong Kiet, District 10, Ho Chi Minh City, Vietnam   Email: ptsnam@hcmut.edu.vn
,
Khoa D. Huynh
Faculty of Chemical Engineering, HCMC University of Technology, VNU-HCM, 268 Ly Thuong Kiet, District 10, Ho Chi Minh City, Vietnam   Email: ptsnam@hcmut.edu.vn
,
Tung T. Nguyen
Faculty of Chemical Engineering, HCMC University of Technology, VNU-HCM, 268 Ly Thuong Kiet, District 10, Ho Chi Minh City, Vietnam   Email: ptsnam@hcmut.edu.vn
,
Nam T. S. Phan*
Faculty of Chemical Engineering, HCMC University of Technology, VNU-HCM, 268 Ly Thuong Kiet, District 10, Ho Chi Minh City, Vietnam   Email: ptsnam@hcmut.edu.vn
› Author Affiliations
Further Information

Publication History

Received: 15 June 2018

Accepted after revision: 10 July 2018

Publication Date:
02 August 2018 (online)


Abstract

We report a method for copper ferrite-catalyzed coupling of indoles and N,N-dimethylacetamide (DMA) to afford Arundine derivatives. Halogen, methoxy, boronate ester, and trimethylsilyl functionalities are compatible with reaction conditions. Unprotected or sterically hindered indoles are also competent substrates. Indoles containing competitively reactive pyrazoles deliver the desired products in reasonable yields. The copper ferrite is easily recovered and reused, up to nine times without a significant yield loss.

Supporting Information

 
  • References and Notes

    • 1a Rahman KW. Li Y. Wang Z. Sarkar SH. Sarkar FH. Cancer Res. 2006; 66: 4952
    • 1b Safe S. Papineni S. Chintharlapalli S. Cancer Lett. 2008; 269: 326

      Review:
    • 2a Shiri M. Zolfigol MA. Kruger HG. Tanbakouchian Z. Chem. Rev. 2010; 110: 2250

    • Selected examples:
    • 2b Singh H. Singh K. Tetrahedron 1988; 44: 5897
    • 2c de La Herrián G. Segura A. Csákÿ AG. Org. Lett. 2007; 9: 961
    • 2d Abe T. Ikeda T. Itoh T. Hatae N. Toyota E. Ishikura M. Heterocycles 2014; 88: 187
    • 2e Li D. Wu T. Liang K. Xia C. Org. Lett. 2016; 18: 2228
    • 2f Abe T. Nakamura S. Yanada R. Choshi T. Hibino S. Ishikura M. Org. Lett. 2013; 15: 3622
    • 3a Pradhan PK. Dey S. Giri VS. Jaisankar P. Synthesis 2005; 1779
    • 3b Pal C. Dey S. Mahato SK. Vinayagam J. Pradhan PK. Giri VS. Jaisankar P. Hossain T. Baruri S. Ray D. Biswas SM. Bioorg. Med. Chem. Lett. 2007; 17: 4924
    • 3c Zhao D. Wang Y. Zhu M.-X. Shen Q. Zhang L. Du Y. Li J. -X. RSC Adv. 2013; 3: 10272
    • 3d Nagarajan R. Perumal PT. Chem. Lett. 2004; 33: 288
    • 3e Srivastava A. Agarwal A. Gupta SK. Jain N. RSC Adv. 2016; 6: 23008
    • 3f Bahuguna A. Kumar S. Sharma V. Reddy KL. Bhattacharyya K. Ravikumar PC. Krishnan V. ACS Sustainable Chem. Eng. 2017; 5: 8551
    • 3g Deb ML. Borpatra PJ. Saikia PJ. Baruah PK. Org. Biomol. Chem. 2017; 15: 1435

      Review:
    • 4a Le Bras J. Muzart J. N,N-Dimethylformamide and N,N-Dimethylacetamide as Carbon, Hydrogen, Nitrogen, and/or Oxygen Sources. Wu X.-F. Wiley-VCH; Weinheim: 2017: 199

    • Selected examples:
    • 4b Pu F. Li Y. Song Y.-H. Xiao J. Liu Z.-W. Wang C. Liu Z.-T. Chen J.-G. Lu J. Adv. Synth. Catal. 2016; 358: 539
    • 4c Kaswan P. Nandwana NK. DeBoef B. Kumar A. Adv. Synth. Catal. 2016; 358: 2108
    • 4d Deb ML. Borpatra PJ. Dev Pegu C. Thakuria R. Saikia PJ. Baruah PK. ChemistrySelect 2017; 2: 140
    • 4e Modi A. Ali W. Patel BK. Adv. Synth. Catal. 2016; 358: 2100
    • 4f Xu Z. Hang Z. Chai L. Liu Z.-Q. Org. Lett. 2016; 18: 4662
    • 4g Chen X. Zhao H. Chen C. Jiang H. Zhang M. Org. Lett. 2018; 20: 1171
    • 4h Mondal S. Samanta S. Santra S. Bagdi AK. Hajra A. Adv. Synth. Catal. 2016; 358: 3633

      Review:
    • 5a Ojha NK. Zyryanov GV. Majee A. Charunshin VN. Chupakin ON. Santra S. Coord. Chem. Rev. 2017; 353: 1

    • Selected examples:
    • 5b Hudson R. Ishikawa S. Li C.-J. Moores A. Synlett 2013; 24: 1637
    • 5c Sarode SA. Bhojane JM. Nagarkar JM. RSC Adv. 2015; 5: 105353
    • 5d Panda N. Jena AK. Mohapatra S. Rout SR. Tetrahedron Lett. 2011; 52: 1924
    • 5e Sivakami R. Ganesh Babu S. Dhanuskodi S. Karvembu R. RSC Adv. 2015; 5: 8571
    • 5f Satish G. Reddy KH. V. Ramesh K. Kumar BS. P. A. Nageswar YV. D. Tetrahedron Lett. 2014; 55: 2596
    • 5g Yang D. Zhu X. Wei W. Jiang M. Zhang N. Ren D. You J. Wang H. Synlett 2014; 25: 729
    • 5h Zhang W. Zeng Q. Zhang X. Tian Y. Yue Y. Guo Y. Wang Z. J. Org. Chem. 2011; 76: 4741
    • 5i Lee EY. Park J. ChemCatChem 2011; 3: 1127
    • 5j Zhang W. Tian Y. Zhao N. Wang Y. Li J. Wang Z. Tetrahedron 2014; 70: 6120
    • 5k Rosario AR. Casola KK. Oliveira CE. S. Zeni G. Adv. Synth. Catal. 2013; 355: 2960
    • 5l Satish G. Reddy KH. V. Anil BS. P. Shankar J. Kumar RU. Nageswar YV. D. Tetrahedron Lett. 2014; 55: 5533
    • 5m Vásquez-Céspedes S. Chepiga KM. Möller N. Schäfer AH. Glorius F. ACS Catal. 2016; 6: 5954
    • 5n Vásquez-Céspedes S. Holtkamp M. Karst U. Glorius F. Synlett 2017; 28: 2759
  • 6 See the Supporting Information for details.
  • 7 Toutov AA. Liu W.-B. Betz KN. Fedorov A. Stoltz B. Grubbs RH. Nature 2015; 518: 80
  • 8 Oxidative cleavage of disubstituted olefins in the presence of copper is known; for example, see: Lan X.-W. Wang N.-X. Zhang W. Wen J.-L. Bai C.-B. Xing Y. Li YH. Org. Lett. 2015; 17: 4460
  • 9 Indole Methylene-Dimerization with DMA; Typical Procedure for 4k In a 2-dram vial equipped with a magnetic stir bar was charged indole derivative 3k (0.75 mmol, 148 mg), tert-butyl hydroperoxide (TBHP; 2.25 mmol, 0.3 mL), CuFe2O4 (0.1125 mmol, 27 mg), and DMA (2.25 mL). The mixture was was heated at 140 °C for 24 h then cooled to room temperature, and the copper ferrite was separated by using an external magnet. The mother liquor was diluted with EtOAc (20 mL) and H2O (20 mL). Aqueous layer was further extracted with EtOAc (2 × 10 mL). Combined organic layers were washed with H2O (20 mL) and brine (2 × 20 mL), dried over Na2SO4, filtered, and concentrated. Flash column chromatography (gradient EtOAc in hexanes from 20% to 50%) gave 4k. Yield: 87 mg (57%); red oil. 1H NMR (600 MHz, CDCl3): δ = 7.92–7.83 (m, 4 H), 7.72 (s, 2 H), 7.55 (dd, J = 8.8, 1.3 Hz, 2 H), 7.31 (d, J = 8.7 Hz, 2 H), 6.84 (s, 2 H), 6.43 (s, 2 H), 4.23 (s, 2 H), 3.69 (s, 6 H). 13C NMR (101 MHz, CDCl3): δ = 140.5, 136.1, 133.4, 128.7, 128.0, 127.7, 114.9, 114.7, 110.6, 109.9, 107.0, 33.0, 21.0. HRMS (ESI): m/z [M+H]+ calcd for C25H22N6: 407.1982; found: 407.1980.
    • 10a Chen X. Hao X.-S. Goodhue CE. Yu J.-Q. J. Am. Chem. Soc. 2006; 128: 6790
    • 10b Gandeepan P. Koeller J. Ackermann L. ACS Catal. 2017; 7: 1030
    • 11a Shang M. Wang M.-M. Saint-Denis TG. Li M.-H. Dai H.-X. Yu J.-Q. Angew. Chem. Int. Ed. 2017; 56: 5317
    • 11b Kong W.-J. Chen X. Wang M. Dai H.-X. Yu J.-Q. Org. Lett. 2018; 20: 284
  • 12 We also attempted N-methyl-7-azaindole; however, no product formation was observed. See the Supporting Information for a list of unsuccessful substrates.