Cooperative Catalysis: Radical Addition to Olefins and Asymmetric Protonation

Significance: Jiang and co-workers report the enantioselective radical conjugate addition–protonation of N-aryl glycines to α-branched vinylazaarenes using a metal-free dual catalytic system (a photosensitizer and a chiral phosphoric acid). The corresponding products are obtained in high yields with good to excellent enantioselectivities, and the methodology is applied to the synthesis of the medicinal compound pheniramine.

Comment: Because α-amino acids are abundant, their use as starting materials for organic synthesis is desirable. In this report, N-aryl α-glycines undergo photooxidative decarboxylation and react further with highly activated olefins in a radical pathway followed by enantioselective protonation. While many examples are shown, the presented substrate scope is still limited to pyridine- and quinoline-containing substances.

Proposed mechanism:

- Photoreduction of the substrate
- Protonation
- Enantioselective conjugate addition

Selected examples:

- 87% yield, er = 97.3
- 83% yield, er = 94.6
- 69% yield, er = 96.5:3.5
- 95% yield, er = 96:4
- 83% yield, er = 95:4.5
- 76% yield (over two steps), er = 95:4.5

Enantioselective protonation

Proposed mechanism:

1. PMP deprotection
2. Reductive amination

R2

- (PMP = para-methoxyphenyl)
- 83% yield, er = 95.5:4.5
- 76% yield (over two steps), er = 95:4.5

R2

- (R)-pheniramine (antihistamine drug)

Synfacts Contributors: Benjamin List, David Díaz-Oviedo