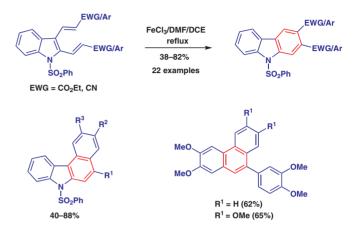
P. Raju et al.

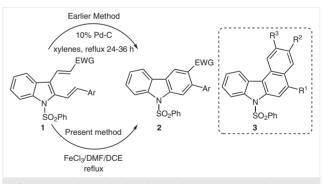

246

Letter

Synthesis of 2,3-Disubstituted Carbazoles, Benzo[c]carbazoles, and Phenanthrenes Through FeCl₃-Mediated Cyclization of Triene Frameworks

Potharaju Raju Thiyagarajan Mageshwaran Bose Muthu Ramalingam Arasambattu K. Mohanakrishnan* ©

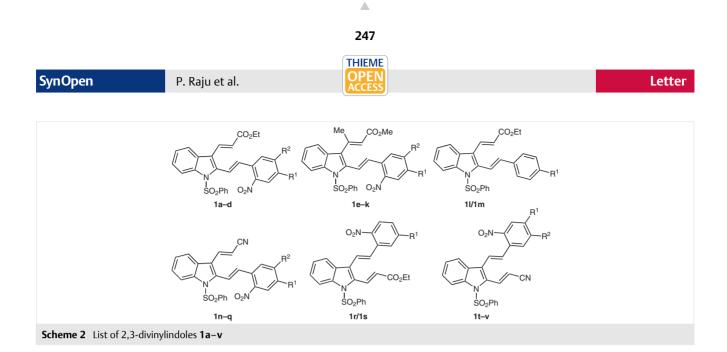
Department of Organic Chemistry, School of Chemical Sciences, University of Madras, Guindy Campus, Chennai-600 025, Tamil Nadu, India mohan_67@hotmail.com

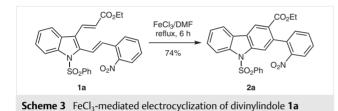

Received: 11.07.2018 Accepted after revision: 02.08.2018 Published online: 27.08.2018 DOI: 10.1055/s-0037-1609936; Art ID: so-2018-d0042-

License terms: CC

Abstract A facile synthesis of 2,3-disubstituted carbazoles through electrocyclization of 2,3-divinylindoles using FeCl₃ in DMF at reflux is reported. The methodology was found to be applicable for smooth transformation of 3-aryl-2-vinylindole as well as 2-styrylbiphenyl into the respective benzo[c]carbazole and phenanthrene.

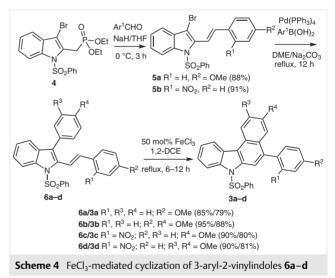
Key words carbazoles, electrocyclization, Iron(III) chloride, 2,3-divinylindole, benzocarbazole, phenanthrene


Over the years, our research group has exploited electrocyclization of 1-phenylsulfonyl-2,3-divinylindoles as a key step for the syntheses of quinocarbazoles,^{1a} staurosporine aglycone,^{1b,1c} and also for accessing a wide variety of substituted carbazoles.² We have also accomplished a Lewis acid mediated electrocyclization strategy for accessing calothrixin B and its derivatives.³ In all these reports, the thermal electrocyclization followed by aromatization of 2,3-divinylindoles could be performed using 10% Pd/C in xylenes at reflux to give the respective carbazoles in good yields. However, the inconsistent quality of 10% Pd-C, difficulty in the aromatization of intermediate dihydrocarbazole, coupled with prolonged reaction time at elevated temperature, makes this protocol unsuitable for performing the reaction on a multi-gram scale. We sought to develop an alternative procedure that avoids the use Pd/C and also overcomes the disadvantages noted above. Hence, in a further continuation of our work on the synthesis of carbazoles,^{1–3} we report herein the synthesis of a wide variety of carbazole derivatives **2** through FeCl₃-mediated^{4,5} electrocyclization as a key step. The synthesis of benzo[*c*]carbazoles **3** could also be achieved from the respective 2-vinyl-3-arylindoles (Scheme 1).



 $[\]mbox{Scheme 1}$ Synthesis of carbazoles 2 and 3 using $\mbox{FeCl}_3\mbox{-mediated cyclization}$

To realize this objective, the required 2,3-divinylindoles **1a–v** were prepared (Scheme 2) from the respective phosphonate esters.⁶ As a representative case, thermal electrocyclization of **1a** in the presence of anhydrous FeCl₃ in anhydrous DMF at reflux for 6h afforded 2-nitrophenyl carbazole **2a**⁷ in 74% yield (Scheme 3).


To our delight, FeCl₃-mediated electrocyclization of a wide variety of 2,3-divinylindoles could be smoothly performed to afford the respective carbazoles.

The structures of various types of divinylindoles employed and the resulting carbazoles obtained are presented in Table1. The reaction of 1-phenylsulfonyl-2,3-divinylindoles **1b-d** with FeCl₃ in anhydrous DMF at reflux afforded carbazoles **2b-d** in 71–78% yields, respectively (entry 1). The FeCl₃-mediated elctrocyclization could be smoothly performed with 2,3-divinylindoles 1e-k to afford the expected 4-methylcarbazoles **2e-k** in good yields (entry 2). However, the reaction was found to proceed slowly with 2,3-divinylindole **1**/1**m**, containing a phenyl or *p*-anisyl unit, vielding the respective carbazole **21** and **2m** in 43% and 38% yields (entry 3). The isolation of compounds 21 and **2m** in low yields confirms that the electron-donating nature of the aryl unit present in 2,3-divinylindole 11 or 1m is not conducive for the FeCl₃-mediated electrocyclization reaction. As expected, the 2,3-divinylindoles **1n-q**, containing a cyanovinyl unit, upon reaction with 50mol% FeCl₃ in DMF at reflux furnished the respective 3-cyano-2-(2'-nitrophenyl)carbazoles **2n-q** in 78–82% yields (entry 4). Under identical conditions, the isomeric 3-(2'-nitrophenyl)vinylindoles 1r-v, containing 2-vinyl ester as well as a 2-vinyl cyanide unit, could be smoothly transformed into the appropriate carbazoles 2r-v (entries 5 and 6).

The synthesis of benzo[c]carbazole analogues employing the FeCl₃-mediated cyclization was then initiated. Accordingly, Wittig–Horner reaction of phosphonate ester $\mathbf{4}^{6}$ with substituted benzaldehydes in the presence of NaH in tetrahydrofuran (THF) at 0°C for 3h afforded 3-bromo-2arylindoles **5a** and **5b**. As expected, the Suzuki coupling of bromo compound **5a/5b** with aryl boronic acid using Pd(PPh₃)₄ and Na₂CO₃ in 1,2-dimethoxyethane (DME) at reflux furnished 3-aryl-2-strylindoles **6a**–**d** as colorless solids in good yields. As expected, the reaction of **6a**–**d** with 50 mol% FeCl₃ in anhydrous 1,2-dichloroethane (DCE) at room temperature or at reflux furnished 2-aryl benzo[*c*]carbazoles **3a**–**d**⁷ in good yields (Scheme 4).

Subsequently, 3-bromo-2-methylindole, upon benzylic bromination followed by hydrolysis and MnO_2 oxidation of corresponding alcohol, led to 3-bromoindole-2-aldehyde **7**. The Suzuki coupling of bromo compound **7** with veratryl boronic acid using Pd(PPh₃)₄ in the presence of K₃PO₄ in DME reflux afforded 2-formyl-3-arylindole **8** as a colorless solid in 87% yield. Indole aldehyde **8**, upon Wittig reaction with (carbethoxymethylene)triphenylphosphorane in

248

CO2Et

SynOpen

3

Letter

Yield (%)^b

71 73

78

78

71

70

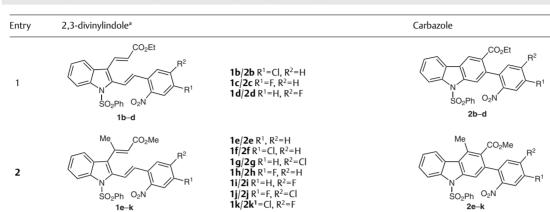
43

38

79

82

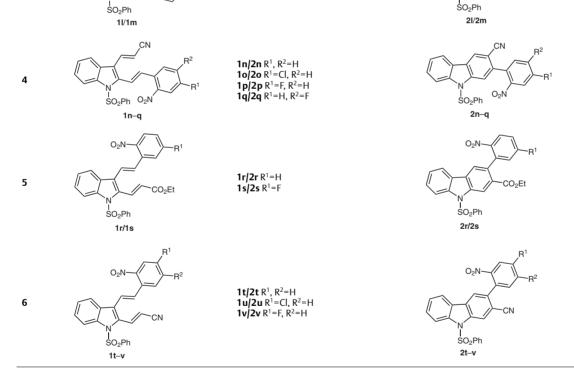
81


78

78

72

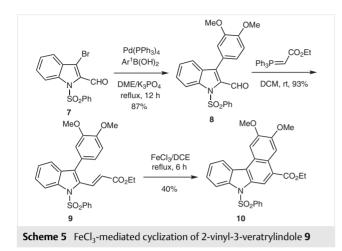
80 72 74


CO2Et

11/21 R1=H

1m/2m R¹=OMe

Table 1 FeCl₃-Mediated Electrocyclization of 1-Phenylsulfonyl-2,3-divinylindoles 1b-v



^a Reactions were carried out using **1a-v** (1 equiv), FeCl₃ (0.5-2 equiv) in DMF (10mL) at reflux for 3-12h.

^b Isolated yield by column chromatography.

anhydrous CH₂Cl₂ at room temperature, led to 3-veratryl-2vinylindole 9 in 93% yield. The 2-vinyl ester 9, upon cyclization using 50mol% FeCl₃ in anhydrous 1,2-DCE reflux, furnished benzo[c]carbazole 10 in a moderate yield (Scheme 5). Attempts to improve the yield of the benzo[*c*]carbazole **10** either by increasing the number of equivalents of FeCl₃ or by prolonging the reaction time was not found to be useful.

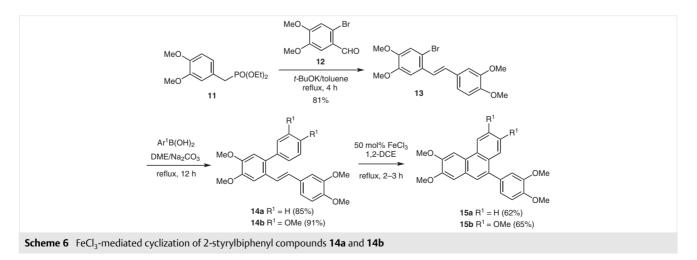
Next, the Wittig–Horner reaction of phosphonate ester 11^8 with 2-bromo-veratraldehyde 12 in the presence of *t*-BuOK in toluene at reflux afforded vinyl compound 13. As expected, the Suzuki coupling of 13 with boronic acids furnished the required triene compounds 14a and 14b in 85% and 91% yields. The triene frame work of 14a and 14b underwent cyclization upon interaction with 50mol% FeCl₃ in anhydrous 1,2-DCE at reflux to give 9-arylphenanthrenes $15a^7$ and 15b in 62% and 65% yields, respectively (Scheme 6).

In summary, we have achieved the syntheses of 2,3disubstituted carbazoles, benzo[*c*]carbazoles, and phenanthrene derivatives by employing FeCl₃-mediated cyclization of the corresponding triene frameworks. For the first time, the FeCl₃-mediated cyclization of two vinylic carbons as well as phenyl and vinylic carbons could be achieved in acceptable yields.

Acknowledgment

249

THIEME


We thank the CSIR, New Delhi for financial support. P.R. and T.M thank the University Grants Commission (UGC), New Delhi for fellowships. For NMR facilities, the authors thank the Department of Science and Technology Funds for the Improvement of Science and Technology (DST-FIST).

Supporting Information

Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1609936.

References and Notes

- (a) Mohanakrishnan, A. K.; Srinivasan, P. C. J. Org. Chem. 1995, 60, 1939.
 (b) Rajeshwaran, G. G.; Mohanakrishnan, A. K. Org. Lett. 2011, 13, 1418.
 (c) Raju, P.; Rajeshwaran, G. G.; Mohanakrishnan, A. K. Eur. J. Org. Chem. 2015, 7131.
- (2) (a) Dhayalan, V.; Arul, Clement. J.; Jagan, R.; Mohanakrishnan, A. K. *Eur. J. Org. Chem.* **2009**, 531. (b) Sureshbabu, R.; Saravanan, V.; Dhayalan, V.; Mohanakrishnan, A. K. *Eur. J. Org. Chem.* **2011**, 922. (c) Sureshbabu, R.; Mohanakrishnan, A. K. *J. Heterocycl. Chem.* **2012**, *49*, 913. (d) Saravanan, V.; Ramalingam, B. M.; Mohanakrishnan, A. K. *Eur. J. Org. Chem.* **2014**, 1266.
- (3) (a) Ramalingam, B. M.; Saravanan, V.; Mohanakrishnan, A. K. Org. Lett. 2013, 14, 3726. (b) Ramalingam, B. M.; Dhatchana, Moorthy. N.; Chowdhury, S. R.; Mageshwaran, T.; Vellaichamy, E.; Saha, S.; Ganesan, K.; Rajesh, B. N.; Iqbal, S.; Majumder, H. K.; Gunasekaran, K.; Siva, R.; Mohanakrishnan, A. K. J. Med. Chem. 2018, 61, 1285.
- (4) For FeCl₃-mediated cyclization of carbocycles and heterocycles, see: (a) Kischel, J.; Jovel, I.; Mertins, K.; Zapf, A.; Beller, M. Org. Lett. 2006, 8, 19. (b) Liang, Z.; Hou, W.; Du, Y.; Zhang, Y.; Pan, Y.; Mao, D.; Zhao, K. Org. Lett. 2009, 11, 4978. (c) Yang, L.; Lei, C.-H.; Wang, D.-X.; Huang, Z.-T.; Wang, M.-X. Org. Lett. 2010, 12, 3918. (d) Yeh, M.-C. P.; Fang, C.-W.; Lin, H.-H. Org. Lett. 2012, 14, 1830. (e) Kim, H. Y.; Oh, K. Org. Lett. 2014, 16, 5934. (f) Yang, Q.; Xu, T.; Yu, Z. Org. Lett. 2014, 16, 6310. (g) Dethe, D. H.; Murhade, G. M.; Ghosh, S. J. Org. Chem. 2015, 80, 8367. (h) Akbar, S.; Srinivasan, K. J. Org. Chem. 2016, 81, 1229. (i) Paul, K.; Jalal, S.; Kundal, S.;

THIEME

P. Raju et al.

Jana, U. *J. Org. Chem.* **2016**, *81*, 1164. (j) Hung, C.-H.; Gandeepan, P.; Cheng, L.-C.; Chen, L.-Y.; Cheng, M.-J.; Cheng, C.-H. *J. Am. Chem. Soc.* **2017**, *139*, 17015.

- (5) For FeCl₃-mediated cyclization of indole derivatives, see:
 (a) Cantagrel, G.; Carné-Carnavalet, B. d.; Meyer, C.; Cossy, J. Org. Lett. 2009, 11, 4262. (b) Han, Y.-Y.; Han, W.-Y.; Hou, X.; Zhang, X.-M.; Yuan, W.-C. Org. Lett. 2012, 14, 4054. (c) Paul, K.; Bera, K.; Jalal, S.; Sarkar, S.; Jana, U. Org. Lett. 2014, 16, 2166. (d) Nandi, R. K.; Guillot, R.; Kouklovsky, C.; Vincent, G. Org. Lett. 2016, 18, 1716. (e) Wu, H.-R.; Cheng, L.; Kong, D.-L.; Huang, H.-Y.; Gu, C.-L.; Liu, L.; Wang, D.; Li, C. J. Org. Lett. 2016, 18, 1382. (f) Wu, J.; Nandi, R. K.; Guillot, R.; Kouklovsky, C.; Vincent, G. Org. Lett. 2018, 20, 1845. (g) Wang, W.; Bai, X.; Jin, S.; Guo, J.; Zhao, Y.; Miao, H.; Zhu, Y.; Wang, Q.; Bu, Z. Org. Lett. 2018, 20, 3451.
- (6) Rajeshwaran, G. G.; Nandakumar, M.; Sureshbabu, R.; Mohanakrishnan, A. K. Org. Lett. 2011, 13, 1270.
- (7) Representative procedure for 2a: To a stirred solution of 2,3divinyl compound 1a (0.2 mmol) in anhydrous DMF (10 mL) at r.t., anhydrous FeCl₃ (0.4 mmol) was added and the reaction mixture was heated at reflux for 6 h. After completion of the reaction (monitored by TLC), the mixture was poured over crushed ice (50 g) containing conc. HCl (3 mL). The crude product was extracted with ethyl acetate (3 × 20 mL) and the combined organic layer was dried (Na₂SO₄). Removal of solvent followed by column chromatographic purification (1% EtOAc/hexane) afforded carbazole 2a (74 mg, 74%) as a colorless solid. Mp 220-222 °C; ¹H NMR (300 MHz CDCl₃): δ = 8.26 (s, 1 H), 8.23 (d, J = 7.2 Hz, 1 H), 8.15 (s, 1 H), 8.07 (d, J = 8.1 Hz, 1 H), 7.89 (d, J = 7.5 Hz, 1 H), 7.69 (d, J = 7.8 Hz, 2 H), 7.61 (m, 8 H), 4.05 (q, J = 6.5 Hz, 2 H), 1.01 (t, J = 7.1 Hz, 3 H) ppm. ¹³C NMR (75 MHz, $CDCl_3$): δ = 166.1, 148.4, 140.1, 139.1, 138.9, 137.6, 137.1, 134.2, 132.6, 131.5, 129.2, 128.4, 128.3, 126.4, 126.1, 125.7, 125.1, 124.7, 124.0, 123.1, 120.5, 116.5, 115.3, 61.1, 13.8 ppm.

Representative procedure for **3a**: To a stirred solution of 3-aryl-2-vinylindole **6a** (0.1 g, 0.21 mmol) in anhydrous 1,2-DCE (8 mL) at r.t., anhydrous FeCl₃ (18 mg, 0.10 mmol) was added and the reaction mixture was stirred at reflux for 3 h. After completion of the reaction (monitored by TLC), the mixture was poured over ice water (20 mL) and acidified with conc. HCl (2 mL). It was then extracted with CH_2Cl_2 (2 × 10 mL) and the combined organic layer was dried (Na₂SO₄). Removal of solvent followed by column chromatographic purification (Silica gel; EtOAc-hexane, 2:8) gave benzo[c]carbazole **3a** as a colorless solid (79 mg, 79%). Mp 168–170 °C; ¹H NMR (300 MHz, CDCl₃): δ = 8.69 (d, J = 8.4 Hz, 1 H), 8.46–8.40 (m, 2 H), 7.97 (d, J = 8.4 Hz, 1 H), 7.73 (d, J = 7.8 Hz, 2 H), 7.60 (t, J = 7.2 Hz, 1 H), 7.42-7.32 (m, 7 H), 7.24-7.17 (m, 2 H), 7.00 (d, J = 8.4 Hz, 2 H), 3.84 (s, 3 H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 159.2, 140.7, 138.2, 137.9, 136.1, 133.8, 133.0, 131.3, 129.8, 129.1, 129.0, 127.6, 127.1, 127.0, 126.3, 126.1, 124.8, 124.4, 123.7, 122.1, 119.0, 115.6, 115.3, 113.8, 55.4 ppm. Dept-135 (75 MHz, CDCl₃): δ = 133.8, 131.3, 129.0, 127.5, 127.1, 126.3, 126.0, 124.8, 124.4, 123.7, 122.0, 115.6, 115.3, 113.7, 55.3 ppm. HRMS (EI): *m*/*z* [M⁺] calcd for C₂₉H₂₁NO₃S: 463.1242; found: 463.1220. Representative procedure for **15a**: To a stirred solution of 2-styrylbiphenyl compound biphenyl vinylene **14a** (0.1 g, 0.26 mmol) in anhydrous 1,2-DCE (10 mL) at r.t., anhydrous FeCl₃ (21 mg, 0.13 mmol) was added and the reaction mixture was stirred at reflux for 3 h. Following a similar work up procedure to that for 6a afforded 2,3-dimethoxyphenanthrene 15a (62 mg, 62%) as a colorless solid. Mp 170–172 °C; ¹H NMR (300 MHz, CDCl₃): δ = 8.63 (d, J = 8.4 Hz, 1 H), 8.06 (s, 1 H), 7.97 (d, J = 8.4 Hz, 1 H), 7.68–7.62 (m, 2 H), 7.50 (t, J = 7.2 Hz, 1 H), 7.27 (d, J = 3.3 Hz, 1 H), 7.12-7.02 (m, 3 H), 4.17 (s, 3 H), 4.06 (s, 3 H), 4.00 (s, 3 H), 3.93 (s, 3 H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 149.6, 149.3, 148.6, 148.3, 136.9, 133.7, 130.5, 130.0, 127.0, 126.7, 126.5, 126.0, 125.5, 124.4, 122.4, 122.3, 113.5, 111.0, 108.2, 103.2, 56.1, 56.0, 55.9, 55.8 ppm. HRMS (EI): *m*/*z* [M⁺] cacld for C₂₄H₂₂O₄: 374.1518; found: 374.1515.

(8) Koufaki, M.; Theodorou, E.; Galaris, D.; Nousis, L.; Katsanou, E.
 S.; Alexis, M. N. J. Med. Chem. 2006, 49, 300.

Letter