A High-Throughput Approach to Discovery: Heck-Type Reactivity with Aldehydes

J. K. Vandavasi
S. G. Newman*
University of Ottawa, Canada

Palladium-Catalyzed Annulation via Acyl C–H Bond Activation

G. Chen*
Y. Yu
X. Huang*
Dongguan University of Technology, P. R. of China
Fujian Institute of Research on the Structure of Matter, P. R. of China
Development of Novel C–H Bond Transformations and Their Application to the Synthesis of Organic Functional Molecules

Y. Kuninobu*
Kyushu University, Japan

The Invention of New Methodologies: An Opportunity for Dating Natural Products

M. Barbazanges
L. Fensterbank*
Sorbonne Université, France

Cover Page: Atropisomerism – In Memoriam Kurt Mislow

This document was downloaded for personal use only. Unauthorized distribution is strictly prohibited.
Cluster Preface: Atropisomerism

J. S. Siegel*
Tianjin University, P. R. of China

Prologue: Atropisomerism

J. S. Siegel*
Tianjin University, P. R. of China

α-Alkylation of N–C Axially Chiral Quinazolinone Derivatives Bearing Various ortho-Substituted Phenyl Groups: Relation between Diastereoselectivity and the ortho-Substituent

M. Matsuoka
A. Iida
O. Kitagawa*
Shibaura Institute of Technology, Japan
Dynamic Covalent Chemistry within Biphenyl Scaffolds: Effects from Endocyclic to Exocyclic Sulfonamides

C. Ni
M. Wang
L. You*
Fujian Institute of Research on the Structure of Matter, P. R. of China

Synthesis and Conformational Analysis of 10-Mesitylanthracene-1,8-diyl Oligomers

S. Toyota*
T. Saibara
K. Fujise
T. Oki
T. Iwanaga
Tokyo Institute of Technology, Japan

Atropisomerism in the 2,3,4,5-Tetrahydro-1H-1,5-benzodiazepine Nucleus: Effects of Central Chirality at C3 on the N-Mesylation Reaction

H. Tabata*
Y. Tsuji
T. Yoneda
T. Tasaka
T. Oshitari
H. Takahashi*
H. Natsugari*
Teikyo University, Japan
Affinity Science Corporation, Japan
Tokyo University of Science, Japan
Transmission of Point Chirality to Axial Chirality for Strong Circular Dichroism in Triaryl methylium-o,o-dimers

Y. Ishigaki
T. Iwai
Y. Hayashi
A. Nagaki
R. Katoono
K. Fujiwara
J.-i. Yoshida
T. Suzuki*
Hokkaido University, Japan

Toward a Catalytic Atroposelective Synthesis of Diaryl Ethers Through C(sp²)–H Alkylation with Nitroalkanes

A. N. Dinh
R. R. Noorbehesht
S. T. Toenjes
A. C. Jackson
M. A. Saputra
S. M. Maddox
J. L. Gustafson*
San Diego State University, USA

Stereodynamic Analysis of New Atropisomeric 4,7-Di(naphthalen-1-yl)-5,6-dinitro-1H-indoles

A. Pagano
E. Marotta
A. Mazzanti
G. Petrillo*
C. Tavani
M. Mancinelli*
University of Bologna, Italy
University of Genova, Italy
A Planar-Chiral Pillar[5]arene-Based Monophosphine Ligand with Induced Chirality at the Biaryl Axis

Y. Nagata* Y. Shimada T. Nishikawa R. Takeda M. Uno T. Ogoshi* M. Suginome*
Kyoto University, Japan
Kanazawa University, Japan

Effect of Regioisomerism on the Efficiency of 1-Phenylpyrrole-Type Atropisomeric Amino Alcohol Ligands in Enantioselective Organometallic Reactions

B. Mátravölgyi S. Deák Z. Erdélyi T. Hergert P. Ábrányi-Balogh F. Faigl*
Budapest University of Technology and Economics, Hungary

Configurationally Stable Atropisomeric Acridinium Fluorophores

C. Fischer C. Sparr*
University of Basel, Switzerland
Cobalt Vanadium Oxide Supported on Reduced Graphene Oxide for the Oxidation of Styrene Derivatives to Aldehydes with Hydrogen Peroxide as Oxidant

H. Zou
C. Hu
K. Chen
G. Xiao
X. Peng*
Nanjing University of Science and Technology, P. R. of China

Catalyst (0.02 g), 65 °C, MeCN (5 mL)
H₂O₂ (30 wt%, 3 equiv), 6 h

R¹ = aryl
R² = H, NO₂, Ph

Combining Oxoammonium Cation Mediated Oxidation and Photo-redox Catalysis for the Conversion of Aldehydes into Nitriles

J. Nandi
M. L. Witko
N. E. Leadbeater*
University of Connecticut, USA

R = aryl, hetaryl
(NH₄)₂S₂O₈

• ammonium persulfate as oxidant and nitrogen source
• dual catalytic system of photocatalyst and ACT
• 12 examples 13–74% yield

Pd-Catalyzed Oxidation of Aldimines to Amides

S. Gao
Y. Ma
W. Chen
J. Luo*
Ningbo University, P. R. of China

Pd(OAc)₂, TBHP

R¹ = Br, Cl, F, Me, NO₂
R² = CF₃, NO₂, COMe, Br, Cl, F, Me, t-Bu, OCF₃, OMe

21 examples up to 85% yield
Synlett 2018, 29, 2195–2198
DOI: 10.1055/s-0037-1610245

N. N. Le
A. M. Rodriguez
J. R. Alleyn
M. R. Gesinski*
Southwestern University, USA

Synthesis of 1,4-Diketones via Titanium-Mediated Reductive Homocoupling of α-Haloketones

\[
\begin{align*}
R &= \text{aryl or heteroaromatic} \\
X &= \text{Cl or Br}
\end{align*}
\]

11 examples
22–90%

Facile Construction of Hydantoin Scaffolds via a Post-Ugi Cascade Reaction

17 examples, yield 42–77%
Two steps and one purification
Short reaction times
Atom economy
One-pot protocol
Microwave irradiation

Iridium/f-Amphox-Catalyzed Asymmetric Hydrogenation of Styrylglyoxylamides

16 examples
96–99% yield
94–98% ee
Chemoselective and Metal-Free Synthesis of Aryl Esters from the Corresponding Benzylic Alcohols in Aqueous Medium Using TBHP/TBAI as an Efficient Catalytic System

S. Nandy
A. Ghatak
A. K. Das
S. Bhar*
Jadavpur University, India

\[\text{MeCO} \quad \text{(88%)} \]

\[\text{OH} \quad \text{R = Me} \]

\[\text{tBuOOH (2 mol equiv)} \]

\[\text{(Bu)}_4\text{N}^+ \text{I}^- \text{ (20 mol\%)} \]

\[\text{Imidazole (2 mol equiv)} \]

\[\text{H}_2\text{O, 8 h, 80 °C} \]

\[\text{MeOH} \]

\[\text{COOMe} \]

\[\text{OH} \]

\[\text{(88%)} \]

\[\text{R = H} \]