Enantioselective Dearomatization of Pyridines with Styrene-Derived Nucleophiles

Significance: Dearomatization of heteroaromatics is a valuable transformation in organic chemistry to create new carbon–carbon bonds. Herein, Buchwald and co-workers report the dearomatization of pyridines with a chiral benzylic copper species generated through an enantioselective copper hydride addition to the corresponding styrene.

Comment: The intermediate dihydropyridine could be oxidized to regenerate the pyridine or reduced to give the piperidine scaffold. A variety of substituents could be tolerated on either the styrene or pyridine, including halogens and alkyl or alkyne groups. The alkene could also be a β-substituted styrene containing a heteroatom in the alkyl chain.

SYNFACTS Contributors: Mark Lautens, Andrew Whyte

**SYNFACTS 02072018, 14(07), 0707 Published online: 18.06.2018 DOI: 10.1055/s-0037-1609533; Reg-No.: L06218SF ©Georg Thieme Verlag Stuttgart · New York