Synthesis 2018; 50(10): 2076-2086
DOI: 10.1055/s-0037-1609375
paper
© Georg Thieme Verlag Stuttgart · New York

Aldazines in the Castagnoli–Cushman Reaction

Alexander Mikheyev
Saint Petersburg State University, Saint Petersburg, 199034, Russian Federation   Email: m.krasavin@spbu.ru
,
Grigory Kantin
Saint Petersburg State University, Saint Petersburg, 199034, Russian Federation   Email: m.krasavin@spbu.ru
,
Saint Petersburg State University, Saint Petersburg, 199034, Russian Federation   Email: m.krasavin@spbu.ru
› Author Affiliations
This research was supported by the Russian Scientific Foundation (project grant 14-50-00069).
Further Information

Publication History

Received: 07 January 2018

Accepted after revision: 23 February 2018

Publication Date:
22 March 2018 (online)


Abstract

Aldazines were employed in the Castagnoli–Cushman reaction of homophthalic anhydride for the first time. The reaction proved to be distinctly diastereoselective when conducted at room temperature in acetonitrile, yielding predominantly the kinetic cis-configured adduct as a racemate. Thermodynamically more stable trans-configuration could be attained either via heating the cis-configured product in DMSO or via the action of a base (imidazole) in the course of CDI-promoted esterification or amidation of the carboxylic acid function in the initial adducts. Further manipulation of the remaining N-acylhydrazone moiety in the latter led to N-alkyl- or fully unprotected N-aminolactams.

Supporting Information

 
  • References

  • 1 Address correspondence to this author at the Laboratory of Chemical Pharmacology, Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii prospekt, Peterhof 198504, Russian Federation.
  • 2 Krasavin M. In Isocyanide Chemistry – Applications in Synthesis and Material Science . Nenajdenko VG. Wiley-VCH; Weinheim: 2012. Chap. 6, 195-231
  • 3 Lakontseva E. Krasavin M. Tetrahedron Lett. 2010; 51: 4095
    • 4a Krasavin M. Bushkova E. Parchinsky V. Shumsky A. Synthesis 2010; 933
    • 4b Krasavin M. Parchinsky V. Shumsky A. Konstantinov I. Vantskul A. Tetrahedron Lett. 2010; 51: 1367
  • 5 Bushkova E. Parchinsky V. Krasavin M. Mol. Diversity 2010; 14: 493
  • 6 Cushman M. Castagnoli N. J. Org. Chem. 1973; 38: 440
  • 7 Krasavin M. Dar’in D. Tetrahedron Lett. 2016; 57: 1635
  • 8 Rożkiewicz DI. Myers BD. Stupp SI. Angew. Chem. Int. Ed. 2011; 50: 6324
  • 9 Bakulina O. Bannykh A. Dar’in D. Krasavin M. Chem. Eur. J. 2017; 23: 17667
  • 10 El-Alali A. Al-Kamali AS. Can. J. Chem. 2002; 80: 1293
  • 11 Sarnpitak P. Krasavin M. Tetrahedron Lett. 2014; 55: 2299
  • 12 Azizian J. Mohammadi AA. Karimi AR. Mohammadizadeh MR. J. Org. Chem. 2005; 70: 350
  • 13 Yu N. Poulain R. Gesquiere JC. Synlett 2000; 355
  • 14 Kalia J. Raines RT. Angew. Chem. Int. Ed. 2008; 47: 7523
  • 15 Chai D. Colon M. Duffy KJ. Fitch DM. Tedesco R. Zimmerman MN. PCT Int. Appl WO2007038571A1, ; Chem. Abstr. 2007, 146, 380309
  • 16 Rozin YuA. Vorob’ova EA. Morzherin YuYu. Bakulev VA. Chem. Heterocycl. Comp. 2001; 37: 294
  • 17 Zhao Z. Kulkarni KG. Murphy GK. Adv. Synth. Catal. 2017; 359: 2222
  • 18 Tellier P. Mathais H. Schirmann JP. Weiss F. German Patent DE 2 255 931, Chem. Abstr. 1973, 79, 65795.
  • 19 Sheldrick GM. Acta Crystallogr., Ser A 2008; 64: 112
  • 20 Palatinus L. Chapius G. J. Appl. Crystallogr. 2007; 40: 786
  • 21 Dolomanov OV. Bourhis LJ. Gildea RJ. Howard JA. K. Puschmann H. J. Appl. Crystallogr. 2009; 42: 339