Organocatalytic C(sp³)–H Amination through Nitrenoid Transfer

Significance: The Hilinski group reports a C(sp³)–H amination through a nitrenoid transfer catalyzed by iminium salt A. The reaction proceeds in moderate to high yields, and the method is applicable to several natural products having other functional groups.

Comment: In contrast to reported nitrenoid-transfer reactions catalyzed by transition metals, the authors developed an organocatalytic variant of the transformation. They proposed the diaziridinium salt as critical intermediate, which is supported by ESI-MS analysis, but not yet fully characterized. A kinetic isotopic effect study suggested C–H cleavage as the rate-determining step.

Selected examples:

- \(\text{R}^1, \text{R}^2, \text{R}^3 = \text{Alk, Ar} \)
- \(\text{R}^4 = \text{Ar, OCH}_2 \text{CCl}_3 \)

- **R1**:
 - H (64% yield)
 - Br (37% yield)
 - Br (69% yield)
 - O (56% yield)
 - O (71% yield)

- **R2**:
 - Me
 - CF₃

- **R3**:
 - NHTs
 - Br
 - NHTs
 - NHTs

- **R4**:
 - OCH₂CCl₃
 - SO₂Ph
 - BF₄⁻

Mechanistic studies:

Detection of a proposed intermediate:

- \(\text{PhI} \text{NSO}_2 \text{R}^4 (2 \text{ equiv}) A (20 \text{ mol}%) \quad \text{CH}_2\text{Cl}_2, \text{r.t.} \quad 27 \text{ examples} 36–87\% \text{ yield} \)

KIE study:

- \(\text{H} \quad \text{H} \quad \text{D} \quad \text{D} \)
- \(\text{PhI} \text{NSO}_2 \text{Ts} (2 \text{ equiv}) A (20 \text{ mol}%) \quad \text{CH}_2\text{Cl}_2, \text{r.t.} \quad k_\text{H}/k_\text{D} = 2.5 \)