Synthesis of a PCSK9 Inhibitor

Significance: The target molecule I is a hemiaminal ester prodrug of an inhibitor of proprotein convertase subtilisin/kexin type 9 (PCSK9) that is of interest for reducing serum LDL-cholesterol levels. A markworthy step in the synthesis depicted is the three-component dynamic kinetic resolution between tetrazole D, acetaldehyde, and isobutyric anhydride catalyzed by the enantiopure DMAP catalyst E to afford hemiaminal ester (S)-F (er = 97:3) in quantitative yield on a multikilogram scale.

Comment: The tetrazole D was initially generated by reaction of nitrile C with hydrazoic acid generated in situ from sodium azide and ammonium chloride in DMF at >100 °C. This method generates toxic and explosive anhydrous hydrazoic acid (pK_a = 4.6). A safer method shown here for the synthesis of D entails reaction of sodium azide (2 equiv) with nitrile C using zinc bromide (0.1 equiv) as a catalyst in isopropanol–water (1:1) at 75 °C. Under these conditions only trace amounts of hydrazoic acid are generated. The yield is 85%.

Category: Synthesis of Natural Products and Potential Drugs

Key words:
- PCSK9 inhibitor
generates a tetrazole ring
- formation
dynamic kinetic resolution
- organocatalysis
- Negishi coupling
- asymmetric hemiaminal ester formation