Semin Speech Lang 2018; 39(01): 066-078
DOI: 10.1055/s-0037-1608854
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Contributions of Neuroimaging to Understanding Language Deficits in Acute Stroke

Rajani Sebastian
1   Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
,
Bonnie L. Breining
1   Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
› Author Affiliations
Further Information

Publication History

Publication Date:
22 January 2018 (online)

Abstract

Advances in structural and functional imaging techniques have provided new insights into our understanding of brain and language relationships. In this article, we review the various structural and functional imaging methods currently used to study language deficits in acute stroke. We also discuss the advantages and the limitations of each imaging modality and the applications of each modality in the clinical and research settings in the study of language deficits.

 
  • References

  • 1 Engelter ST, Gostynski M, Papa S. , et al. Epidemiology of aphasia attributable to first ischemic stroke: incidence, severity, fluency, etiology, and thrombolysis. Stroke 2006; 37 (06) 1379-1384
  • 2 Flowers HL, Skoretz SA, Silver FL. , et al. Poststroke aphasia frequency, recovery, and outcomes: a systematic review and meta-analysis. Arch Phys Med Rehabil 2016; 97 (12) 2188-2201.e8
  • 3 Latchaw RE, Alberts MJ, Lev MH. , et al; American Heart Association Council on Cardiovascular Radiology and Intervention, Stroke Council, and the Interdisciplinary Council on Peripheral Vascular Disease. Recommendations for imaging of acute ischemic stroke: a scientific statement from the American Heart Association. Stroke 2009; 40 (11) 3646-3678
  • 4 Tozer Fink KR, Levitt MR, Fink JR. Principles of modern neuroimaging. In: Ellenbogen RG, Abdulrauf SI, Sekhar LM. , eds. Principles of Neurological Surgery. Philadelphia, PA: Elsevier; 2012: 53-75
  • 5 Mohr JP, Pessin MS, Finkelstein S, Funkenstein HH, Duncan GW, Davis KR. Broca aphasia: pathologic and clinical. Neurology 1978; 28 (04) 311-324
  • 6 de Lucas EM, Sánchez E, Gutiérrez A. , et al. CT protocol for acute stroke: tips and tricks for general radiologists. Radiographics 2008; 28 (06) 1673-1687
  • 7 Lansberg MG, Albers GW, Beaulieu C, Marks MP. Comparison of diffusion-weighted MRI and CT in acute stroke. Neurology 2000; 54 (08) 1557-1561
  • 8 Chalela JA, Kidwell CS, Nentwich LM. , et al. Magnetic resonance imaging and computed tomography in emergency assessment of patients with suspected acute stroke: a prospective comparison. Lancet 2007; 369 (9558): 293-298
  • 9 Huttel SA, Song AW, McCarthy G. , eds. Functional Magnetic Resonance Imaging. 1st ed. Sunderland, MA: Sinauer Associates; 2004
  • 10 Le Bihan D. Looking into the functional architecture of the brain with diffusion MRI. Int Congr Ser 2006; 1290: 1-24
  • 11 Schaefer PW, Roccatagliata L, Gonzalez RG. Stroke and cerebral ischemia. In: Edelman RR, Hesselink JR, Zlatkin MB, Crues JV. , eds. Clinical Magnetic Resonance Imaging. Philadelphia, PA: Saunders Elsevier; 2006: 1454-1498
  • 12 Schaefer PW, Copen WA, Lev MH, Gonzalez RG. Diffusion-weighted imaging in acute stroke. Neuroimaging Clin N Am 2005; 15 (03) 503-530 , ix–x
  • 13 Bykowski J, Schellinger PD, Warach S. Diffusion and perfusion MRI. In: Edelman RR, Hesselink JR, Zlatkin MB, Crues JV. , eds. Clinical Magnetic Resonance Imaging. Philadelphia, PA: Saunders Elsevier; 2006: 1538-1570
  • 14 Sundgren PC, Dong Q, Gómez-Hassan D, Mukherji SK, Maly P, Welsh R. Diffusion tensor imaging of the brain: review of clinical applications. Neuroradiology 2004; 46 (05) 339-350
  • 15 Warach S, Chien D, Li W, Ronthal M, Edelman RR. Fast magnetic resonance diffusion-weighted imaging of acute human stroke. Neurology 1992; 42 (09) 1717-1723
  • 16 González RG. Clinical MRI of acute ischemic stroke. J Magn Reson Imaging 2012; 36 (02) 259-271
  • 17 Huisman TAGM. Diffusion-weighted and diffusion tensor imaging of the brain, made easy. Cancer Imaging 2010; 10 Spec no A: S163-S171
  • 18 Baird AE, Warach S. Magnetic resonance imaging of acute stroke. J Cereb Blood Flow Metab 1998; 18 (06) 583-609
  • 19 Huisman TAGM. Diffusion-weighted imaging: basic concepts and application in cerebral stroke and head trauma. Eur Radiol 2003; 13 (10) 2283-2297
  • 20 Hillis AE, Barker PB, Beauchamp NJ, Gordon B, Wityk RJ. MR perfusion imaging reveals regions of hypoperfusion associated with aphasia and neglect. Neurology 2000; 55 (06) 782-788
  • 21 Shih LC, Saver JL, Alger JR. , et al. Perfusion-weighted magnetic resonance imaging thresholds identifying core, irreversibly infarcted tissue. Stroke 2003; 34 (06) 1425-1430
  • 22 Schlaug G, Benfield A, Baird AE. , et al. The ischemic penumbra: operationally defined by diffusion and perfusion MRI. Neurology 1999; 53 (07) 1528-1537
  • 23 Darby DG, Barber PA, Gerraty RP. , et al. Pathophysiological topography of acute ischemia by combined diffusion-weighted and perfusion MRI. Stroke 1999; 30 (10) 2043-2052
  • 24 Schäbitz WR. MR mismatch is useful for patient selection for thrombolysis: no. Stroke 2009; 40 (08) 2908-2909
  • 25 Kranz PG, Eastwood JD. Does diffusion-weighted imaging represent the ischemic core? An evidence-based systematic review. AJNR Am J Neuroradiol 2009; 30 (06) 1206-1212
  • 26 Hillis AE, Wityk RJ, Tuffiash E. , et al. Hypoperfusion of Wernicke's area predicts severity of semantic deficit in acute stroke. Ann Neurol 2001; 50 (05) 561-566
  • 27 Shahid H, Sebastian R, Tippett DC. , et al. Regional brain dysfunction associated with semantic errors in comprehension. Semin Speech Lang 2018; 39 (01) 78-85
  • 28 Hillis AE, Kleinman JT, Newhart M. , et al. Restoring cerebral blood flow reveals neural regions critical for naming. J Neurosci 2006; 26 (31) 8069-8073
  • 29 Motta M, Ramadan A, Hillis AE, Gottesman RF, Leigh R. Diffusion-perfusion mismatch: an opportunity for improvement in cortical function. Front Neurol 2015; 5: 280
  • 30 Mori S, Tournier J-D. , eds. Introduction to Diffusion Tensor Imaging. 2nd ed. Oxford, UK: Elsevier; 2014
  • 31 Mukherjee P. Diffusion tensor imaging and fiber tractography in acute stroke. Neuroimaging Clin N Am 2005; 15 (03) 655-665 , xii
  • 32 Assaf Y, Pasternak O. Diffusion tensor imaging (DTI)-based white matter mapping in brain research: a review. J Mol Neurosci 2008; 34 (01) 51-61
  • 33 Muñoz Maniega S, Bastin ME, Armitage PA. , et al. Temporal evolution of water diffusion parameters is different in grey and white matter in human ischaemic stroke. J Neurol Neurosurg Psychiatry 2004; 75 (12) 1714-1718
  • 34 Catani M, Mesulam M. The arcuate fasciculus and the disconnection theme in language and aphasia: history and current state. Cortex 2008; 44 (08) 953-961
  • 35 Rosso C, Vargas P, Valabregue R. , et al. Aphasia severity in chronic stroke patients: a combined disconnection in the dorsal and ventral language pathways. Neurorehabil Neural Repair 2015; 29 (03) 287-295
  • 36 Marchina S, Zhu LL, Norton A, Zipse L, Wan CY, Schlaug G. Impairment of speech production predicted by lesion load of the left arcuate fasciculus. Stroke 2011; 42 (08) 2251-2256
  • 37 Hosomi A, Nagakane Y, Yamada K. , et al. Assessment of arcuate fasciculus with diffusion-tensor tractography may predict the prognosis of aphasia in patients with left middle cerebral artery infarcts. Neuroradiology 2009; 51 (09) 549-555
  • 38 Kümmerer D, Hartwigsen G, Kellmeyer P. , et al. Damage to ventral and dorsal language pathways in acute aphasia. Brain 2013; 136 (Pt 2): 619-629
  • 39 Ivanova MV, Isaev DY, Dragoy OV. , et al. Diffusion-tensor imaging of major white matter tracts and their role in language processing in aphasia. Cortex 2016; 85: 165-181
  • 40 Koyama T, Domen K. Reduced diffusion tensor fractional anisotropy in the left arcuate fasciculus of patients with aphasia caused by acute cerebral infarct. Prog Rehabil Med 2016; 1: 1-9
  • 41 Leniger-Follert E, Hossmann KA. Simultaneous measurements of microflow and evoked potentials in the somatomotor cortex of the cat brain during specific sensory activation. Pflugers Arch 1979; 380 (01) 85-89
  • 42 Malonek D, Grinvald A. Interactions between electrical activity and cortical microcirculation revealed by imaging spectroscopy: implications for functional brain mapping. Science 1996; 272 (5261): 551-554
  • 43 Ogawa S, Tank DW, Menon R. , et al. Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci U S A 1992; 89 (13) 5951-5955
  • 44 Le Bihan D, Jezzard P, Haxby J, Sadato N, Rueckert L, Mattay V. Functional magnetic resonance imaging of the brain. Ann Intern Med 1995; 122 (04) 296-303
  • 45 de Haan B, Rorden C, Karnath HO. Abnormal perilesional BOLD signal is not correlated with stroke patients' behavior. Front Hum Neurosci 2013; 7: 669
  • 46 Pineiro R, Pendlebury S, Johansen-Berg H, Matthews PM. Altered hemodynamic responses in patients after subcortical stroke measured by functional MRI. Stroke 2002; 33 (01) 103-109
  • 47 D'Esposito M, Deouell LY, Gazzaley A. Alterations in the BOLD fMRI signal with ageing and disease: a challenge for neuroimaging. Nat Rev Neurosci 2003; 4 (11) 863-872
  • 48 Hall DA, Haggard MP, Akeroyd MA. , et al. “Sparse” temporal sampling in auditory fMRI. Hum Brain Mapp 1999; 7 (03) 213-223
  • 49 Price CJ, Friston KJ. Scanning patients with tasks they can perform. Hum Brain Mapp 1999; 8 (2–3): 102-108
  • 50 Anglade C, Thiel A, Ansaldo AI. The complementary role of the cerebral hemispheres in recovery from aphasia after stroke: a critical review of literature. Brain Inj 2014; 28 (02) 138-145
  • 51 Saur D, Lange R, Baumgaertner A. , et al. Dynamics of language reorganization after stroke. Brain 2006; 129 (Pt 6): 1371-1384
  • 52 Jarso S, Li M, Faria A. , et al. Distinct mechanisms and timing of language recovery after stroke. Cogn Neuropsychol 2013; 30 (7–8): 454-475
  • 53 Lee MH, Smyser CD, Shimony JS. Resting-state fMRI: a review of methods and clinical applications. AJNR Am J Neuroradiol 2013; 34 (10) 1866-1872
  • 54 Rosazza C, Minati L. Resting-state brain networks: literature review and clinical applications. Neurol Sci 2011; 32 (05) 773-785
  • 55 Tomasi D, Volkow ND. Resting functional connectivity of language networks: characterization and reproducibility. Mol Psychiatry 2012; 17 (08) 841-854
  • 56 Amemiya S, Kunimatsu A, Saito N, Ohtomo K. Cerebral hemodynamic impairment: assessment with resting-state functional MR imaging. Radiology 2014; 270 (02) 548-555
  • 57 Sebastian R, Long C, Purcell JJ. , et al. Imaging network level language recovery after left PCA stroke. Restor Neurol Neurosci 2016; 34 (04) 473-489
  • 58 Holland R, Leff AP, Josephs O. , et al. Speech facilitation by left inferior frontal cortex stimulation. Curr Biol 2011; 21 (16) 1403-1407
  • 59 Yang M, Li J, Li Y. , et al. Altered intrinsic regional activity and interregional functional connectivity in post-stroke aphasia. Sci Rep 2016; 6: 24803
  • 60 Nair VA, Young BM, La C. , et al. Functional connectivity changes in the language network during stroke recovery. Ann Clin Transl Neurol 2015; 2 (02) 185-195
  • 61 van Hees S, McMahon K, Angwin A, de Zubicaray G, Read S, Copland DA. A functional MRI study of the relationship between naming treatment outcomes and resting state functional connectivity in post-stroke aphasia. Hum Brain Mapp 2014; 35 (08) 3919-3931
  • 62 Sandberg CW. Hypoconnectivity of resting-state networks in persons with aphasia compared with healthy age-matched adults. Front Hum Neurosci 2017; 11: 91