J Pediatr Infect Dis 2018; 13(02): 101-112
DOI: 10.1055/s-0037-1606602
Review Article
Georg Thieme Verlag KG Stuttgart · New York

Pharmacology of Mycobacterial Drugs in Children

Jennifer L. Goldman
1   Divisions of Clinical Pharmacology, Toxicology, and Therapeutic Innovation, Children's Mercy Hospital, Kansas City, Missouri, United States
2   Department of Infectious Diseases, Children's Mercy Hospital, Kansas City, Missouri, United States
3   Department of Pediatrics, University of Missouri-Kansas City, School of Medicine, Kansas City, Missouri, United States
,
Susan M. Abdel-Rahman
1   Divisions of Clinical Pharmacology, Toxicology, and Therapeutic Innovation, Children's Mercy Hospital, Kansas City, Missouri, United States
3   Department of Pediatrics, University of Missouri-Kansas City, School of Medicine, Kansas City, Missouri, United States
› Author Affiliations
Further Information

Publication History

21 February 2017

08 March 2017

Publication Date:
05 October 2017 (online)

Abstract

To effectively treat tuberculosis (TB), optimization of therapy guided by an understanding of pharmacokinetic-pharmacodynamic principles represents the strategy most likely to influence favorable patient outcomes. However, challenges are often encountered during TB treatment given the concomitant administration of multiple drugs, some with poorly defined therapeutic targets, for prolonged durations. Treatment is further complicated in children as many antitubercular drugs have not been extensively studied in the pediatric population where the impact of human development on drug disposition is relevant, but poorly understood. In this review, the pharmacokinetics (PK) of antitubercular drugs will be reviewed in the context of the pediatric population. Observed differences between adults and children with respect to TB therapy will be highlighted, and future considerations to enhance our understanding of TB drugs used in children will be explored.

 
  • References

  • 1 World Health Organization. Global Tuberculosis Report 2016. Geneva, Switzerland: WHO; 2016
  • 2 World Health Organization. WHO Guidance for National Tuberculosis Programmes on the Management of Tuberculosis in Children. 2nd ed. Geneva, Switzerland: WHO; 2014
  • 3 Marais BJ. Improving access to tuberculosis preventive therapy and treatment for children. Int J Infect Dis 2017; 56: 122-125
  • 4 Accelerated Approval of New Drugs for Serious or Life-Threatening Illnesses, 21 C.F.R. part 314, subpart H; 2016
  • 5 Bekker A, Schaaf HS, Seifart HI. , et al. Pharmacokinetics of isoniazid in low-birth-weight and premature infants. Antimicrob Agents Chemother 2014; 58 (04) 2229-2234
  • 6 Peloquin CA, Namdar R, Dodge AA, Nix DE. Pharmacokinetics of isoniazid under fasting conditions, with food, and with antacids. Int J Tuberc Lung Dis 1999; 3 (08) 703-710
  • 7 Pouplin T, Bang ND, Toi PV. , et al. Naïve-pooled pharmacokinetic analysis of pyrazinamide, isoniazid and rifampicin in plasma and cerebrospinal fluid of Vietnamese children with tuberculous meningitis. BMC Infect Dis 2016; 16: 144
  • 8 Roy V, Gupta D, Gupta P, Sethi GR, Mishra TK. Pharmacokinetics of isoniazid in moderately malnourished children with tuberculosis. Int J Tuberc Lung Dis 2010; 14 (03) 374-376
  • 9 Seth V, Beotra A, Seth SD. , et al. Serum concentrations of rifampicin and isoniazid in tuberculosis. Indian Pediatr 1993; 30 (09) 1091-1098
  • 10 Thee S, Detjen AA, Wahn U, Magdorf K. Isoniazid pharmacokinetic studies of the 1960s: considering a higher isoniazid dose in childhood tuberculosis. Scand J Infect Dis 2010; 42 (04) 294-298
  • 11 Kiser JJ, Zhu R, DʼArgenio DZ. , et al. Isoniazid pharmacokinetics, pharmacodynamics, and dosing in South African infants. Ther Drug Monit 2012; 34 (04) 446-451
  • 12 Thee S, Seddon JA, Donald PR. , et al. Pharmacokinetics of isoniazid, rifampin, and pyrazinamide in children younger than two years of age with tuberculosis: evidence for implementation of revised World Health Organization recommendations. Antimicrob Agents Chemother 2011; 55 (12) 5560-5567
  • 13 Verhagen LM, López D, Hermans PW. , et al. Pharmacokinetics of anti-tuberculosis drugs in Venezuelan children younger than 16 years of age: supportive evidence for the implementation of revised WHO dosing recommendations. Trop Med Int Health 2012; 17 (12) 1449-1456
  • 14 Kearns GL, Abdel-Rahman SM, Alander SW, Blowey DL, Leeder JS, Kauffman RE. Developmental pharmacology–drug disposition, action, and therapy in infants and children. N Engl J Med 2003; 349 (12) 1157-1167
  • 15 Keller GA, Fabian L, Gomez M, Gonzalez CD, Diez RA, Di Girolamo G. Age-distribution and genotype-phenotype correlation for N-acetyltransferase in Argentine children under isoniazid treatment. Int J Clin Pharmacol Ther 2014; 52 (04) 292-302
  • 16 Ramachandran G, Hemanth Kumar AK, Bhavani PK. , et al. Age, nutritional status and INH acetylator status affect pharmacokinetics of anti-tuberculosis drugs in children. Int J Tuberc Lung Dis 2013; 17 (06) 800-806
  • 17 Kwara A, Enimil A, Gillani FS. , et al. Pharmacokinetics of first-line antituberculosis drugs using WHO revised dosage in children with tuberculosis with and without HIV coinfection. J Pediatric Infect Dis Soc 2016; 5 (04) 356-365
  • 18 Gumbo T, Louie A, Deziel MR. , et al. Concentration-dependent Mycobacterium tuberculosis killing and prevention of resistance by rifampin. Antimicrob Agents Chemother 2007; 51 (11) 3781-3788
  • 19 Nahata MC, Morosco RS, Hipple TF. Effect of preparation method and storage on rifampin concentration in suspensions. Ann Pharmacother 1994; 28 (02) 182-185
  • 20 Bekker A, Schaaf HS, Draper HR. , et al. Pharmacokinetics of rifampin, isoniazid, pyrazinamide, and ethambutol in infants dosed according to revised WHO-recommended treatment guidelines. Antimicrob Agents Chemother 2016; 60 (04) 2171-2179
  • 21 McIlleron H, Hundt H, Smythe W. , et al. Bioavailability of two licensed paediatric rifampicin suspensions: implications for quality control programmes. Int J Tuberc Lung Dis 2016; 20 (07) 915-919
  • 22 Donald PR, Maritz JS, Diacon AH. The pharmacokinetics and pharmacodynamics of rifampicin in adults and children in relation to the dosage recommended for children. Tuberculosis (Edinb) 2011; 91 (03) 196-207
  • 23 Koup JR, Williams-Warren J, Viswanathan CT, Weber A, Smith AL. Pharmacokinetics of rifampin in children. II. Oral bioavailability. Ther Drug Monit 1986; 8 (01) 17-22
  • 24 Acocella G. Clinical pharmacokinetics of rifampicin. Clin Pharmacokinet 1978; 3 (02) 108-127
  • 25 Hussels H, Kroening U, Magdorf K. Ethambutol and rifampicin serum levels in children: second report on the combined administration of ethambutol and rifampicin. Pneumonologie 1973; 149 (01) 31-38
  • 26 Tan TQ, Mason Jr EO, Ou CN, Kaplan SL. Use of intravenous rifampin in neonates with persistent staphylococcal bacteremia. Antimicrob Agents Chemother 1993; 37 (11) 2401-2406
  • 27 Thee S, Detjen A, Wahn U, Magdorf K. Rifampicin serum levels in childhood tuberculosis. Int J Tuberc Lung Dis 2009; 13 (09) 1106-1111
  • 28 Agrawal S, Panchagnula R. Implication of biopharmaceutics and pharmacokinetics of rifampicin in variable bioavailability from solid oral dosage forms. Biopharm Drug Dispos 2005; 26 (08) 321-334
  • 29 Agunod M, Yamaguchi N, Lopez R, Luhby AL, Glass GB. Correlative study of hydrochloric acid, pepsin, and intrinsic factor secretion in newborns and infants. Am J Dig Dis 1969; 14 (06) 400-414
  • 30 Peloquin CA, Namdar R, Singleton MD, Nix DE. Pharmacokinetics of rifampin under fasting conditions, with food, and with antacids. Chest 1999; 115 (01) 12-18
  • 31 Polasa K, Krishnaswamy K. Effect of food on bioavailability of rifampicin. J Clin Pharmacol 1983; 23 (10) 433-437
  • 32 Siegler DI, Bryant M, Burley DM, Citron KM, Standen SM. Effect of meals on rifampicin absorption. Lancet 1974; 2 (7874): 197-198
  • 33 McCracken Jr GH, Ginsburg CM, Zweighaft TC, Clahsen J. Pharmacokinetics of rifampin in infants and children: relevance to prophylaxis against Haemophilus influenzae type b disease. Pediatrics 1980; 66 (01) 17-21
  • 34 Regazzi M, Carvalho AC, Villani P, Matteelli A. Treatment optimization in patients co-infected with HIV and Mycobacterium tuberculosis infections: focus on drug-drug interactions with rifamycins. Clin Pharmacokinet 2014; 53 (06) 489-507
  • 35 Holdiness MR. Clinical pharmacokinetics of the antituberculosis drugs. Clin Pharmacokinet 1984; 9 (06) 511-544
  • 36 Nahata MC, Fan-Havard P, Barson WJ, Bartkowski HM, Kosnik EJ. Pharmacokinetics, cerebrospinal fluid concentration, and safety of intravenous rifampin in pediatric patients undergoing shunt placements. Eur J Clin Pharmacol 1990; 38 (05) 515-517
  • 37 Koup JR, Williams-Warren J, Weber A, Smith AL. Pharmacokinetics of rifampin in children. I. Multiple dose intravenous infusion. Ther Drug Monit 1986; 8 (01) 11-16
  • 38 Ramachandran G, Kumar AK, Kannan T. , et al. Low serum concentrations of rifampicin and pyrazinamide associated with poor treatment outcomes in children with tuberculosis related to HIV status. Pediatr Infect Dis J 2016; 35 (05) 530-534
  • 39 Hiruy H, Rogers Z, Mbowane C. , et al. Subtherapeutic concentrations of first-line anti-TB drugs in South African children treated according to current guidelines: the PHATISA study. J Antimicrob Chemother 2015; 70 (04) 1115-1123
  • 40 Antwi S, Yang H, Enimil A. , et al. Pharmacokinetics of the first-line antituberculosis drugs in Ghanaian children with tuberculosis with or without HIV coinfection. Antimicrob Agents Chemother 2017; 61 (02) 61
  • 41 Mlotha R, Waterhouse D, Dzinjalamala F. , et al. Pharmacokinetics of anti-TB drugs in Malawian children: reconsidering the role of ethambutol. J Antimicrob Chemother 2015; 70 (06) 1798-1803
  • 42 Arya A, Roy V, Lomash A, Kapoor S, Khanna A, Rangari G. Rifampicin pharmacokinetics in children under the Revised National Tuberculosis Control Programme, India, 2009. Int J Tuberc Lung Dis 2015; 19 (04) 440-445
  • 43 Mukherjee A, Velpandian T, Singla M, Kanhiya K, Kabra SK, Lodha R. Pharmacokinetics of isoniazid, rifampicin, pyrazinamide and ethambutol in Indian children. BMC Infect Dis 2015; 15: 126
  • 44 Ramachandran G, Kumar AK, Bhavani PK. , et al. Pharmacokinetics of first-line antituberculosis drugs in HIV-infected children with tuberculosis treated with intermittent regimens in India. Antimicrob Agents Chemother 2015; 59 (02) 1162-1167
  • 45 Savic RM, Ruslami R, Hibma JE. , et al. Pediatric tuberculous meningitis: model-based approach to determining optimal doses of the anti-tuberculosis drugs rifampin and levofloxacin for children. Clin Pharmacol Ther 2015; 98 (06) 622-629
  • 46 Schaaf HS, Garcia-Prats AJ, Donald PR. Antituberculosis drugs in children. Clin Pharmacol Ther 2015; 98 (03) 252-265
  • 47 Zvada SP, Denti P, Donald PR. , et al. Population pharmacokinetics of rifampicin, pyrazinamide and isoniazid in children with tuberculosis: in silico evaluation of currently recommended doses. J Antimicrob Chemother 2014; 69 (05) 1339-1349
  • 48 Dooley KE, Bliven-Sizemore EE, Weiner M. , et al. Safety and pharmacokinetics of escalating daily doses of the antituberculosis drug rifapentine in healthy volunteers. Clin Pharmacol Ther 2012; 91 (05) 881-888
  • 49 Weiner M, Bock N, Peloquin CA. , et al; Tuberculosis Trials Consortium. Pharmacokinetics of rifapentine at 600, 900, and 1,200 mg during once-weekly tuberculosis therapy. Am J Respir Crit Care Med 2004; 169 (11) 1191-1197
  • 50 Chan SL, Yew WW, Porter JH. , et al. Comparison of Chinese and Western rifapentines and improvement of bioavailability by prior taking of various meals. Int J Antimicrob Agents 1994; 3 (04) 267-274
  • 51 Zvada SP, Van Der Walt JS, Smith PJ. , et al. Effects of four different meal types on the population pharmacokinetics of single-dose rifapentine in healthy male volunteers. Antimicrob Agents Chemother 2010; 54 (08) 3390-3394
  • 52 Reith K, Keung A, Toren PC, Cheng L, Eller MG, Weir SJ. Disposition and metabolism of 14C-rifapentine in healthy volunteers. Drug Metab Dispos 1998; 26 (08) 732-738
  • 53 Blake MJ, Abdel-Rahman SM, Jacobs RF, Lowery NK, Sterling TR, Kearns GL. Pharmacokinetics of rifapentine in children. Pediatr Infect Dis J 2006; 25 (05) 405-409
  • 54 Marshall JD, Abdel-Rahman S, Johnson K, Kauffman RE, Kearns GL. Rifapentine pharmacokinetics in adolescents. Pediatr Infect Dis J 1999; 18 (10) 882-888
  • 55 Weiner M, Savic RM, Kenzie WR. , et al; Tuberculosis Trials Consortium PREVENT TB Pharmacokinetic Group. Rifapentine pharmacokinetics and tolerability in children and adults treated once weekly with rifapentine and isoniazid for latent tuberculosis infection. J Pediatric Infect Dis Soc 2014; 3 (02) 132-145
  • 56 Skinner MH, Blaschke TF. Clinical pharmacokinetics of rifabutin. Clin Pharmacokinet 1995; 28 (02) 115-125
  • 57 Skinner MH, Hsieh M, Torseth J. , et al. Pharmacokinetics of rifabutin. Antimicrob Agents Chemother 1989; 33 (08) 1237-1241
  • 58 Moultrie H, McIlleron H, Sawry S. , et al. Pharmacokinetics and safety of rifabutin in young HIV-infected children receiving rifabutin and lopinavir/ritonavir. J Antimicrob Chemother 2015; 70 (02) 543-549
  • 59 Mycobutin – rifaputin capsules [package insert]. New York, NY: Pharmacia & Upjohn; 2010
  • 60 Donald PR, Maritz JS, Diacon AH. Pyrazinamide pharmacokinetics and efficacy in adults and children. Tuberculosis (Edinb) 2012; 92 (01) 1-8
  • 61 Peloquin CA, Jaresko GS, Yong CL, Keung AC, Bulpitt AE, Jelliffe RW. Population pharmacokinetic modeling of isoniazid, rifampin, and pyrazinamide. Antimicrob Agents Chemother 1997; 41 (12) 2670-2679
  • 62 Thee S, Detjen A, Wahn U, Magdorf K. Pyrazinamide serum levels in childhood tuberculosis. Int J Tuberc Lung Dis 2008; 12 (09) 1099-1101
  • 63 Gupta P, Roy V, Sethi GR, Mishra TK. Pyrazinamide blood concentrations in children suffering from tuberculosis: a comparative study at two doses. Br J Clin Pharmacol 2008; 65 (03) 423-427
  • 64 Lacroix C, Hoang TP, Nouveau J. , et al. Pharmacokinetics of pyrazinamide and its metabolites in healthy subjects. Eur J Clin Pharmacol 1989; 36 (04) 395-400
  • 65 Arya DS, Ojha SK, Semwal OP, Nandave M. Pharmacokinetics of pyrazinamide in children with primary progressive disease of lungs. Indian J Med Res 2008; 128 (05) 611-615
  • 66 Roy V, Tekur U, Chopra K. Pharmacokinetics of pyrazinamide in children suffering from pulmonary tuberculosis. Int J Tuberc Lung Dis 1999; 3 (02) 133-137
  • 67 Zhu M, Starke JR, Burman WJ. , et al. Population pharmacokinetic modeling of pyrazinamide in children and adults with tuberculosis. Pharmacotherapy 2002; 22 (06) 686-695
  • 68 Zhu M, Burman WJ, Starke JR. , et al. Pharmacokinetics of ethambutol in children and adults with tuberculosis. Int J Tuberc Lung Dis 2004; 8 (11) 1360-1367
  • 69 Peloquin CA, Bulpitt AE, Jaresko GS, Jelliffe RW, Childs JM, Nix DE. Pharmacokinetics of ethambutol under fasting conditions, with food, and with antacids. Antimicrob Agents Chemother 1999; 43 (03) 568-572
  • 70 Jusko WJ, Gretch M. Plasma and tissue protein binding of drugs in pharmacokinetics. Drug Metab Rev 1976; 5 (01) 43-140
  • 71 Lee CS, Gambertoglio JG, Brater DC, Benet LZ. Kinetics of oral ethambutol in the normal subject. Clin Pharmacol Ther 1977; 22 (5 Pt 1): 615-621
  • 72 Levy M, Rigaudière F, de Lauzanne A. , et al. Ethambutol-related impaired visual function in childrens less than 5 years of age treated for a mycobacterial infection: diagnosis and evolution. Pediatr Infect Dis J 2015; 34 (04) 346-350
  • 73 Adcock JD, Hettig RA. Absorption, distribution and excretion of streptomycin. Arch Intern Med (Chic) 1946; 77: 179-195
  • 74 Briedis DJ, Robson HG. Cerebrospinal fluid penetration of amikacin. Antimicrob Agents Chemother 1978; 13 (06) 1042-1043
  • 75 Assael BM, Parini R, Rusconi F, Cavanna G. Influence of intrauterine maturation on the pharmacokinetics of amikacin in the neonatal period. Pediatr Res 1982; 16 (10) 810-815
  • 76 Beachler CW, Speer ME, Mason Jr EO, Yow MD. Pharmacology of kanamycin in the newborn. South Med J 1982; 75 (03) 301-305
  • 77 Bolme P, Eriksson M, Habte D, Paalzow L. Pharmacokinetics of streptomycin in Ethiopian children with tuberculosis and of different nutritional status. Eur J Clin Pharmacol 1988; 33 (06) 647-649
  • 78 Herngren L, Boréus LO, Jalling B, Lagercrantz R. Pharmacokinetic aspects of streptomycin treatment of neonatal septicemia. Scand J Infect Dis 1977; 9 (04) 301-308
  • 79 Hieber JP, Nelson JD. Reevaluation of kanamycin dosage in infants and children. Antimicrob Agents Chemother 1976; 9 (06) 899-902
  • 80 Howard JB, McCracken Jr GH. Reappraisal of kanamycin usage in neonates. J Pediatr 1975; 86 (06) 949-956
  • 81 Marik PE, Havlik I, Monteagudo FS, Lipman J. The pharmacokinetic of amikacin in critically ill adult and paediatric patients: comparison of once- versus twice-daily dosing regimens. J Antimicrob Chemother 1991; 27 (Suppl C): 81-89
  • 82 Padovani EM, Pistolesi C, Fanos V, Messori A, Martini N. Pharmacokinetics of amikacin in neonates. Dev Pharmacol Ther 1993; 20 (3-4): 167-173
  • 83 Zhu M, Burman WJ, Jaresko GS, Berning SE, Jelliffe RW, Peloquin CA. Population pharmacokinetics of intravenous and intramuscular streptomycin in patients with tuberculosis. Pharmacotherapy 2001; 21 (09) 1037-1045
  • 84 Doluisio JT, Dittert LW, LaPiana JC. Pharmacokinetics of kanamycin following intramuscular administration. J Pharmacokinet Biopharm 1973; 1: 253-265
  • 85 Plantier J, Forrey AW, O'Neill MA, Blair AD, Christopher TG, Cutler RE. Pharmacokinetics of amikacin in patients with normal or impaired renal function: radioenzymatic acetylation assay. J Infect Dis 1976; 134 (SUPPL): S323-S330
  • 86 Eriksson M, Bolme P, Habte D, Paalzow L. INH and streptomycin in Ethiopian children with tuberculosis and different nutritional status. Acta Paediatr Scand 1988; 77 (06) 890-894
  • 87 McCracken Jr GH, Threlkeld N, Thomas ML. Intravenous administration of kanamycin and gentamicin in newborn infants. Pediatrics 1977; 60 (04) 463-466
  • 88 Black HR, Griffith RS, Peabody AM. Absorption, excretion and metabolism of capreomycin in normal and diseased states. Ann N Y Acad Sci 1966; 135 (02) 974-982
  • 89 Chien S, Wells TG, Blumer JL. , et al. Levofloxacin pharmacokinetics in children. J Clin Pharmacol 2005; 45 (02) 153-160
  • 90 Thee S, Garcia-Prats AJ, Draper HR. , et al. Pharmacokinetics and safety of moxifloxacin in children with multidrug-resistant tuberculosis. Clin Infect Dis 2015; 60 (04) 549-556
  • 91 Thee S, Garcia-Prats AJ, McIlleron HM. , et al. Pharmacokinetics of ofloxacin and levofloxacin for prevention and treatment of multidrug-resistant tuberculosis in children. Antimicrob Agents Chemother 2014; 58 (05) 2948-2951
  • 92 Levofloxacin drug insert. 2008. Available at: http://www.accessdata.fda.gov/drugsatfda_docs/label/2008/021721s020_020635s57_020634s52_lbl.pdf
  • 93 Stass H, Böttcher MF, Ochmann K. Evaluation of the influence of antacids and H2 antagonists on the absorption of moxifloxacin after oral administration of a 400mg dose to healthy volunteers. Clin Pharmacokinet 2001; 40 (Suppl. 01) 39-48
  • 94 Capparelli EV, Reed MD, Bradley JS. , et al. Pharmacokinetics of gatifloxacin in infants and children. Antimicrob Agents Chemother 2005; 49 (03) 1106-1112
  • 95 Tachibana M, Tanaka M, Masubuchi Y, Horie T. Acyl glucuronidation of fluoroquinolone antibiotics by the UDP-glucuronosyltransferase 1A subfamily in human liver microsomes. Drug Metab Dispos 2005; 33 (06) 803-811
  • 96 Strassburg CP, Strassburg A, Kneip S. , et al. Developmental aspects of human hepatic drug glucuronidation in young children and adults. Gut 2002; 50 (02) 259-265
  • 97 Patel K, Goldman JL. Safety concerns surrounding quinolone use in children. J Clin Pharmacol 2016; 56 (09) 1060-1075
  • 98 Thee S, Garcia-Prats AJ, Donald PR, Hesseling AC, Schaaf HS. Fluoroquinolones for the treatment of tuberculosis in children. Tuberculosis (Edinb) 2015; 95 (03) 229-245
  • 99 Soderhjelm L. Serum para-aminosalicylic acid following oral ingestion in children. Tex Rep Biol Med 1949; 7 (03) 471-479
  • 100 Liwa AC, Schaaf HS, Rosenkranz B, Seifart HI, Diacon AH, Donald PR. Para-aminosalicylic acid plasma concentrations in children in comparison with adults after receiving a granular slow-release preparation. J Trop Pediatr 2013; 59 (02) 90-94
  • 101 Peloquin CA, Zhu M, Adam RD, Singleton MD, Nix DE. Pharmacokinetics of para-aminosalicylic acid granules under four dosing conditions. Ann Pharmacother 2001; 35 (11) 1332-1338
  • 102 Way EL, Smith PK. , et al. The absorption, distribution, excretion and fate of para-aminosalicylic acid. J Pharmacol Exp Ther 1948; 93 (03) 368-382
  • 103 Paser aminosalicylic acid granules delayed release [package insert]. Princeton NJ: Jacobus Pharmaceutical Company Inc; 1996
  • 104 Lehmann J. The role of the metabolism of p-aminosalicylic acid (PAS) in the treatment of tuberculosis. Interaction with the metabolism of isonicotinic acid hydrazide (INH) and the synthesis of cholesterol. Scand J Respir Dis 1969; 50 (03) 169-185
  • 105 Sy SK, de Kock L, Diacon AH. , et al. N-acetyltransferase genotypes and the pharmacokinetics and tolerability of para-aminosalicylic acid in patients with drug-resistant pulmonary tuberculosis. Antimicrob Agents Chemother 2015; 59 (07) 4129-4138
  • 106 Curci C. Pharmacological considerations on cycloserine. Scand J Respir Dis Suppl 1970; 71: 51-60
  • 107 Zhu M, Nix DE, Adam RD, Childs JM, Peloquin CA. Pharmacokinetics of cycloserine under fasting conditions and with high-fat meal, orange juice, and antacids. Pharmacotherapy 2001; 21 (08) 891-897
  • 108 Niemistö M. The influence of sustained release effect on cycloserine concentration in serum. Scand J Respir Dis Suppl 1970; 71: 64-67
  • 109 Zítková L, Tousek J. Pharmacokinetics of cycloserine and terizidone. A comparative study. Chemotherapy 1974; 20 (01) 18-28
  • 110 Battaglia B, Kaufman I, Lyons HA, Marsh W. Toxicity of cycloserine combined with isoniazid in the treatment of tuberculosis in children. Am Rev Respir Dis 1961; 83: 751-752
  • 111 Seromycin cycloserine capsule [package insert]. Indianapolis, IN: Eli Lilly and Company; 2005
  • 112 Conte JE, Barriere SL. Manual of Antibiotics and Infectious Diseases. 5th ed. Philadelphia, PA: Lea & Febiger; 1984
  • 113 Auclair B, Nix DE, Adam RD, James GT, Peloquin CA. Pharmacokinetics of ethionamide administered under fasting conditions or with orange juice, food, or antacids. Antimicrob Agents Chemother 2001; 45 (03) 810-814
  • 114 Lee HW, Kim DW, Park JH. , et al. Pharmacokinetics of prothionamide in patients with multidrug-resistant tuberculosis. Int J Tuberc Lung Dis 2009; 13 (09) 1161-1166
  • 115 Thee S, Garcia-Prats AJ, Donald PR, Hesseling AC, Schaaf HS. A review of the use of ethionamide and prothionamide in childhood tuberculosis. Tuberculosis (Edinb) 2016; 97: 126-136
  • 116 Peloquin CA, James GT, McCarthy E, Goble M. Pharmacokinetic evaluation of ethionamide suppositories. Pharmacotherapy 1991; 11 (05) 359-363
  • 117 Jenner PJ, Smith SE. Plasma levels of ethionamide and prothionamide in a volunteer following intravenous and oral dosages. Lepr Rev 1987; 58 (01) 31-37
  • 118 Conte Jr JE, Golden JA, McQuitty M, Kipps J, Lin ET, Zurlinden E. Effects of AIDS and gender on steady-state plasma and intrapulmonary ethionamide concentrations. Antimicrob Agents Chemother 2000; 44 (05) 1337-1341
  • 119 Donald PR, Seifart HI. Cerebrospinal fluid concentrations of ethionamide in children with tuberculous meningitis. J Pediatr 1989; 115 (03) 483-486
  • 120 Hughes IE, Smith H. Ethionamide: its passage into the cerebrospinal fluid in man. Lancet 1962; 1 (7230): 616-617
  • 121 Henderson MC, Siddens LK, Morré JT, Krueger SK, Williams DE. Metabolism of the anti-tuberculosis drug ethionamide by mouse and human FMO1, FMO2 and FMO3 and mouse and human lung microsomes. Toxicol Appl Pharmacol 2008; 233 (03) 420-427
  • 122 Koukouritaki SB, Simpson P, Yeung CK, Rettie AE, Hines RN. Human hepatic flavin-containing monooxygenases 1 (FMO1) and 3 (FMO3) developmental expression. Pediatr Res 2002; 51 (02) 236-243
  • 123 Peloquin CA. Therapeutic drug monitoring in the treatment of tuberculosis. Drugs 2002; 62 (15) 2169-2183
  • 124 Thee S, Seifart HI, Rosenkranz B. , et al. Pharmacokinetics of ethionamide in children. Antimicrob Agents Chemother 2011; 55 (10) 4594-4600
  • 125 Mathur A, Venkatesan K, Bharadwaj VP, Ramu G. Evaluation of effectiveness of clofazimine therapy. I. Monitoring of absorption of clofazimine from gastrointestinal tract. Indian J Lepr 1985; 57 (01) 146-148
  • 126 Nix DE, Adam RD, Auclair B, Krueger TS, Godo PG, Peloquin CA. Pharmacokinetics and relative bioavailability of clofazimine in relation to food, orange juice and antacid. Tuberculosis (Edinb) 2004; 84 (06) 365-373
  • 127 Jadhav MV, Sathe AG, Deore SS, Patil PG, Joshi NG. Tissue concentration, systemic distribution and toxicity of clofazimine--an autopsy study. Indian J Pathol Microbiol 2004; 47 (02) 281-283
  • 128 Mansfield RE. Tissue concentrations of clofazimine (B663) in man. Am J Trop Med Hyg 1974; 23 (06) 1116-1119
  • 129 Cox H, Ford N. Linezolid for the treatment of complicated drug-resistant tuberculosis: a systematic review and meta-analysis. Int J Tuberc Lung Dis 2012; 16 (04) 447-454
  • 130 Abdel-Rahman SM, Kearns GL. An update on the oxazolidinone antibiotics. Pediatr Infect Dis J 1999; 18 (12) 1101-1102
  • 131 Stalker DJ, Jungbluth GL. Clinical pharmacokinetics of linezolid, a novel oxazolidinone antibacterial. Clin Pharmacokinet 2003; 42 (13) 1129-1140
  • 132 Kearns GL, Jungbluth GL, Abdel-Rahman SM. , et al; Pediatric Pharmacology Research Unit Network. Impact of ontogeny on linezolid disposition in neonates and infants. Clin Pharmacol Ther 2003; 74 (05) 413-422
  • 133 Andreas M, Zeitlinger M, Wisser W. , et al. Cefazolin and linezolid penetration into sternal cancellous bone during coronary artery bypass grafting. Eur J Cardiothorac Surg 2015; 48 (05) 758-764
  • 134 Eslam RB, Burian A, Vila G. , et al. Target site pharmacokinetics of linezolid after single and multiple doses in diabetic patients with soft tissue infection. J Clin Pharmacol 2014; 54 (09) 1058-1062
  • 135 Honeybourne D, Tobin C, Jevons G, Andrews J, Wise R. Intrapulmonary penetration of linezolid. J Antimicrob Chemother 2003; 51 (06) 1431-1434
  • 136 Myrianthefs P, Markantonis SL, Vlachos K. , et al. Serum and cerebrospinal fluid concentrations of linezolid in neurosurgical patients. Antimicrob Agents Chemother 2006; 50 (12) 3971-3976
  • 137 Moellering RC. Linezolid: the first oxazolidinone antimicrobial. Ann Intern Med 2003; 138 (02) 135-142
  • 138 Jungbluth GL, Welshman IR, Hopkins NK. Linezolid pharmacokinetics in pediatric patients: an overview. Pediatr Infect Dis J 2003; 22 (9, Suppl): S153-S157
  • 139 Swaminathan A, du Cros P, Seddon JA. , et al. Treating children for drug-resistant tuberculosis in Tajikistan with Group 5 medications. Int J Tuberc Lung Dis 2016; 20 (04) 474-478
  • 140 Rose PC, Hallbauer UM, Seddon JA, Hesseling AC, Schaaf HS. Linezolid-containing regimens for the treatment of drug-resistant tuberculosis in South African children. Int J Tuberc Lung Dis 2012; 16 (12) 1588-1593
  • 141 Garcia-Prats AJ, Rose PC, Hesseling AC, Schaaf HS. Linezolid for the treatment of drug-resistant tuberculosis in children: a review and recommendations. Tuberculosis (Edinb) 2014; 94 (02) 93-104
  • 142 Chintu C, Luo C, Bhat G, Raviglione M, DuPont H, Zumla A. Cutaneous hypersensitivity reactions due to thiacetazone in the treatment of tuberculosis in Zambian children infected with HIV-I. Arch Dis Child 1993; 68 (05) 665-668
  • 143 Ellard GA, Dickinson JM, Gammon PT, Mitchison DA. Serum concentrations and antituberculosis activity of thiacetazone. Tubercle 1974; 55 (01) 41-54
  • 144 Jenner PJ, Ellard GA, Swai OB. A study of thiacetazone blood levels and urinary excretion in man, using high performance liquid chromatography. Lepr Rev 1984; 55 (02) 121-128
  • 145 Peloquin CA, Nitta AT, Berning SE, Iseman MD, James GT. Pharmacokinetic evaluation of thiacetazone. Pharmacotherapy 1996; 16 (05) 735-741
  • 146 Francois AA, Nishida CR, de Montellano PR, Phillips IR, Shephard EA. Human flavin-containing monooxygenase 2.1 catalyzes oxygenation of the antitubercular drugs thiacetazone and ethionamide. Drug Metab Dispos 2009; 37 (01) 178-186
  • 147 Hoagland D, Zhao Y, Lee RE. Advances in drug discovery and development for pediatric tuberculosis. Mini Rev Med Chem 2016; 16 (06) 481-497
  • 148 Andries K, Verhasselt P, Guillemont J. , et al. A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis. Science 2005; 307 (5707): 223-227
  • 149 Clinical Trials. Gov. Available at: https://www.clinicaltrials.gov/ct2/results?term=bedaquiline&pg=1 . Last accessed December 5, 2016
  • 150 van Heeswijk RP, Dannemann B, Hoetelmans RM. Bedaquiline: a review of human pharmacokinetics and drug-drug interactions. J Antimicrob Chemother 2014; 69 (09) 2310-2318
  • 151 Tmc-207. Tuberculosis (Edinb) 2008; 88 (02) 168-169
  • 152 Matteelli A, Carvalho AC, Dooley KE, Kritski A. TMC207: the first compound of a new class of potent anti-tuberculosis drugs. Future Microbiol 2010; 5 (06) 849-858
  • 153 Diacon AH, Donald PR, Pym A. , et al. Randomized pilot trial of eight weeks of bedaquiline (TMC207) treatment for multidrug-resistant tuberculosis: long-term outcome, tolerability, and effect on emergence of drug resistance. Antimicrob Agents Chemother 2012; 56 (06) 3271-3276
  • 154 The use of delamanid in the treatment of multidrug-resistant tuberculosis in children and adolescents interim policy guidance. World Health Organization. 2016 . Available at: https://www.ghdonline.org/uploads/Delamanid_guideline_child-adol_Oct16.pdf
  • 155 Tadolini M, Garcia-Prats AJ, D'Ambrosio L. , et al. Compassionate use of new drugs in children and adolescents with multidrug-resistant and extensively drug-resistant tuberculosis: early experiences and challenges. Eur Respir J 2016; 48 (03) 938-943