Semin Thromb Hemost 2018; 44(01): 012-019
DOI: 10.1055/s-0037-1605572
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Mechanisms of Platelet Dysfunction in Patients with Implantable Devices

Joshua Casan
1   Hematology Unit, Alfred Hospital, Melbourne, Australia
,
Robert K. Andrews
2   Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
,
Elizabeth E. Gardiner
3   ACRF Department of Cancer Biology and Therapeutics, John Curtin School of Medical Research, Australian National University, Canberra, Australia
,
Amanda K. Davis
1   Hematology Unit, Alfred Hospital, Melbourne, Australia
› Author Affiliations
Further Information

Publication History

Publication Date:
12 September 2017 (online)

Abstract

As treatment options in modern medicine continue to expand, physicians globally have witnessed a veritable explosion in the utility of therapeutic devices. Particularly within the spheres of cardiology and critical care medicine, a plethora of devices are now available with an ever-increasing range of clinical indications. Additionally, the advent of transcatheter-mounted devices has enabled patients unsuitable for more invasive procedures to benefit from intervention, thereby greatly expanding the cohort of device-eligible patients. However, despite advances in design and materials, as well as pharmacological prophylaxis, hemostatic complications continue to plague device recipients, contributing to morbidity and mortality. Elucidating the complex interplay between components of the hemostatic system and cardiac devices has been the subject of much recent research, with greater focus on the coagulation cascade and device-induced perturbations. However, less is known about impact of mechanical surfaces on platelets and the resultant clinical complications, both hemorrhagic and thrombotic. This review will focus on exploring the pathobiology of platelet–surface interactions, contextualized within the wider hemostatic system, with a focus on the increasingly utilized technologies of transcatheter aortic-valve implantation, ventricular assist devices, and extracorporeal membrane oxygenation.

 
  • References

  • 1 Morrell CN, Aggrey AA, Chapman LM, Modjeski KL. Emerging roles for platelets as immune and inflammatory cells. Blood 2014; 123 (18) 2759-2767
  • 2 Rondina MT, Garraud O. Emerging evidence for platelets as immune and inflammatory effector cells. Front Immunol 2014; 5 (11) 653
  • 3 Li C, Li J, Li Y. , et al. Crosstalk between platelets and the immune system: old systems with new discoveries. Adv Hematol 2012; 2012 (01) 384685-384714
  • 4 Zahn R, Gerckens U, Grube E. , et al; German Transcatheter Aortic Valve Interventions-Registry Investigators. Transcatheter aortic valve implantation: first results from a multi-centre real-world registry. Eur Heart J 2011; 32 (02) 198-204
  • 5 Leon MB, Smith CR, Mack M. , et al; PARTNER Trial Investigators. Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery. N Engl J Med 2010; 363 (17) 1597-1607
  • 6 Kapadia SR, Tuzcu EM, Makkar RR. , et al. Long-term outcomes of inoperable patients with aortic stenosis randomly assigned to transcatheter aortic valve replacement or standard therapy. Circulation 2014; 130 (17) 1483-1492
  • 7 Smith CR, Leon MB, Mack MJ. , et al; PARTNER Trial Investigators. Transcatheter versus surgical aortic-valve replacement in high-risk patients. N Engl J Med 2011; 364 (23) 2187-2198
  • 8 Siontis GC, Praz F, Pilgrim T. , et al. Transcatheter aortic valve implantation vs. surgical aortic valve replacement for treatment of severe aortic stenosis: a meta-analysis of randomized trials. Eur Heart J 2016; 37 (47) 3503-3512
  • 9 Grabert S, Lange R, Bleiziffer S. Incidence and causes of silent and symptomatic stroke following surgical and transcatheter aortic valve replacement: a comprehensive review. Interact Cardiovasc Thorac Surg 2016; 23 (03) 469-476
  • 10 Hamm CW, Möllmann H, Holzhey D. , et al; GARY-Executive Board. The German Aortic Valve Registry (GARY): in-hospital outcome. Eur Heart J 2014; 35 (24) 1588-1598
  • 11 Latib A, Naganuma T, Abdel-Wahab M. , et al. Treatment and clinical outcomes of transcatheter heart valve thrombosis. Circ Cardiovasc Interv 2015; 8 (04) e001779
  • 12 Tchetche D, Van der Boon RM, Dumonteil N. , et al. Adverse impact of bleeding and transfusion on the outcome post-transcatheter aortic valve implantation: insights from the Pooled-RotterdAm-Milano-Toulouse In Collaboration Plus (PRAGMATIC Plus) initiative. Am Heart J 2012; 164 (03) 402-409
  • 13 Généreux P, Cohen DJ, Mack M. , et al. Incidence, predictors, and prognostic impact of late bleeding complications after transcatheter aortic valve replacement. J Am Coll Cardiol 2014; 64 (24) 2605-2615
  • 14 Holmes Jr DR, Mack MJ, Kaul S. , et al. 2012 ACCF/AATS/SCAI/STS expert consensus document on transcatheter aortic valve replacement. J Am Coll Cardiol 2012; 59 (13) 1200-1254
  • 15 Kirklin JK, Naftel DC, Pagani FD. , et al. Sixth INTERMACS annual report: a 10,000-patient database. J Heart Lung Transplant 2014; 33 (06) 555-564
  • 16 Hasin T, Marmor Y, Kremers W. , et al. Readmissions after implantation of axial flow left ventricular assist device. J Am Coll Cardiol 2013; 61 (02) 153-163
  • 17 Bunte MC, Blackstone EH, Thuita L. , et al. Major bleeding during HeartMate II support. J Am Coll Cardiol 2013; 62 (23) 2188-2196
  • 18 Susen S, Rauch A, Van Belle E, Vincentelli A, Lenting PJ. Circulatory support devices: fundamental aspects and clinical management of bleeding and thrombosis. J Thromb Haemost 2015; 13 (10) 1757-1767
  • 19 Rame JE, Atluri P, Acker MA. Unexpected abrupt increase in left ventricular assist device thrombosis. N Engl J Med 2014; 370 (15) 1466-1467
  • 20 Schmidt M, Tachon G, Devilliers C. , et al. Blood oxygenation and decarboxylation determinants during venovenous ECMO for respiratory failure in adults. Intensive Care Med 2013; 39 (05) 838-846
  • 21 Ouweneel DM, Schotborgh JV, Limpens J. , et al. Extracorporeal life support during cardiac arrest and cardiogenic shock: a systematic review and meta-analysis. Intensive Care Med 2016; 42 (12) 1922-1934
  • 22 Paden ML, Conrad SA, Rycus PT, Thiagarajan RR. ; ELSO Registry. Extracorporeal Life Support Organization Registry Report 2012. ASAIO J 2013; 59 (03) 202-210
  • 23 Zangrillo A, Landoni G, Biondi-Zoccai G. , et al. A meta-analysis of complications and mortality of extracorporeal membrane oxygenation. Crit Care Resusc 2013; 15 (03) 172-178
  • 24 Murphy DA, Hockings LE, Andrews RK. , et al. Extracorporeal membrane oxygenation-hemostatic complications. Transfus Med Rev 2015; 29 (02) 90-101
  • 25 Davies A, Jones D, Bailey M. , et al; Australia and New Zealand Extracorporeal Membrane Oxygenation (ANZ ECMO) Influenza Investigators. Extracorporeal membrane oxygenation for 2009 Influenza A(H1N1) acute respiratory distress syndrome. JAMA 2009; 302 (17) 1888-1895
  • 26 Sklar MC, Sy E, Lequier L, Fan E, Kanji HD. Anticoagulation practices during venovenous extracorporeal membrane oxygenation for respiratory failure. A systematic review. Ann Am Thorac Soc 2016; 13 (12) 2242-2250
  • 27 Saini A, Hartman ME, Gage BF. , et al. Incidence of platelet dysfunction by thromboelastography-platelet mapping in children supported with ECMO: a pilot retrospective study. Front Pediatr 2016; 3 (03) 116
  • 28 Fraser KH, Zhang T, Taskin ME, Griffith BP, Wu ZJ. A quantitative comparison of mechanical blood damage parameters in rotary ventricular assist devices: shear stress, exposure time and hemolysis index. J Biomech Eng 2012; 134 (08) 081002
  • 29 Ikeda Y, Murata M, Goto S. Von Willebrand factor-dependent shear-induced platelet aggregation: basic mechanisms and clinical implications. Ann N Y Acad Sci 1997; 811: 325-336
  • 30 Andrews RK, Berndt MC. Platelet physiology and thrombosis. Thromb Res 2004; 114 (5-6): 447-453
  • 31 Nobili M, Sheriff J, Morbiducci U, Redaelli A, Bluestein D. Platelet activation due to hemodynamic shear stresses: damage accumulation model and comparison to in vitro measurements. ASAIO J 2008; 54 (01) 64-72
  • 32 Al-Tamimi M, Tan CW, Qiao J. , et al. Pathologic shear triggers shedding of vascular receptors: a novel mechanism for down-regulation of platelet glycoprotein VI in stenosed coronary vessels. Blood 2012; 119 (18) 4311-4320
  • 33 Cheng H, Yan R, Li S. , et al. Shear-induced interaction of platelets with von Willebrand factor results in glycoprotein Ibalpha shedding. Am J Physiol Heart Circ Physiol 2009; 297 (06) H2128-H2135
  • 34 Tsai HM, Sussman II, Nagel RL. Shear stress enhances the proteolysis of von Willebrand factor in normal plasma. Blood 1994; 83 (08) 2171-2179
  • 35 Springer TA. von Willebrand factor, Jedi knight of the bloodstream. Blood 2014; 124 (09) 1412-1425
  • 36 Nesbitt WS, Kulkarni S, Giuliano S. , et al. Distinct glycoprotein Ib/V/IX and integrin α IIbbeta 3-dependent calcium signals cooperatively regulate platelet adhesion under flow. J Biol Chem 2002; 277 (04) 2965-2972
  • 37 Goncalves I, Nesbitt WS, Yuan Y, Jackson SP. Importance of temporal flow gradients and integrin alphaIIbbeta3 mechanotransduction for shear activation of platelets. J Biol Chem 2005; 280 (15) 15430-15437
  • 38 Maxwell MJ, Westein E, Nesbitt WS, Giuliano S, Dopheide SM, Jackson SP. Identification of a 2-stage platelet aggregation process mediating shear-dependent thrombus formation. Blood 2007; 109 (02) 566-576
  • 39 Ruggeri ZM, Orje JN, Habermann R, Federici AB, Reininger AJ. Activation-independent platelet adhesion and aggregation under elevated shear stress. Blood 2006; 108 (06) 1903-1910
  • 40 O'Brien JR, Etherington MD, Brant J, Watkins J. Decreased platelet function in aortic valve stenosis: high shear platelet activation then inactivation. Br Heart J 1995; 74 (06) 641-644
  • 41 Van Belle E, Rauch A, Vincentelli A. , et al. Von Willebrand factor as a biological sensor of blood flow to monitor percutaneous aortic valve interventions. Circ Res 2015; 116 (07) 1193-1201
  • 42 Van Belle E, Rauch A, Vincent F. , et al. von Willebrand factor multimers during transcatheter aortic-valve replacement. N Engl J Med 2016; 375 (04) 335-344
  • 43 Crow S, John R, Boyle A. , et al. Gastrointestinal bleeding rates in recipients of nonpulsatile and pulsatile left ventricular assist devices. J Thorac Cardiovasc Surg 2009; 137 (01) 208-215
  • 44 Karmonik C, Partovi S, Schmack B. , et al. Comparison of hemodynamics in the ascending aorta between pulsatile and continuous flow left ventricular assist devices using computational fluid dynamics based on computed tomography images. Artif Organs 2014; 38 (02) 142-148
  • 45 Yong AS, Pennings GJ, Chang M. , et al. Intracoronary shear-related up-regulation of platelet P-selectin and platelet-monocyte aggregation despite the use of aspirin and clopidogrel. Blood 2011; 117 (01) 11-20
  • 46 Furie B, Furie BC. Mechanisms of thrombus formation. N Engl J Med 2008; 359 (09) 938-949
  • 47 Andrews RK, Karunakaran D, Gardiner EE, Berndt MC. Platelet receptor proteolysis: a mechanism for downregulating platelet reactivity. Arterioscler Thromb Vasc Biol 2007; 27 (07) 1511-1520
  • 48 Gardiner EE, Karunakaran D, Shen Y, Arthur JF, Andrews RK, Berndt MC. Controlled shedding of platelet glycoprotein (GP)VI and GPIb-IX-V by ADAM family metalloproteinases. J Thromb Haemost 2007; 5 (07) 1530-1537
  • 49 Gardiner EE, Karunakaran D, Arthur JF. , et al. Dual ITAM-mediated proteolytic pathways for irreversible inactivation of platelet receptors: de-ITAM-izing FcgammaRIIa. Blood 2008; 111 (01) 165-174
  • 50 Gardiner EE, Arthur JF, Kahn ML, Berndt MC, Andrews RK. Regulation of platelet membrane levels of glycoprotein VI by a platelet-derived metalloproteinase. Blood 2004; 104 (12) 3611-3617
  • 51 Al-Tamimi M, Grigoriadis G, Tran H. , et al. Coagulation-induced shedding of platelet glycoprotein VI mediated by factor Xa. Blood 2011; 117 (14) 3912-3920
  • 52 Al-Tamimi M, Mu F-T, Moroi M, Gardiner EE, Berndt MC, Andrews RK. Measuring soluble platelet glycoprotein VI in human plasma by ELISA. Platelets 2009; 20 (03) 143-149
  • 53 Al-Tamimi M, Arthur JF, Gardiner E, Andrews RK. Focusing on plasma glycoprotein VI. Thromb Haemost 2012; 107 (04) 648-655
  • 54 Gardiner EE, Andrews RK. Plasma sGPVI: changing levels in human disease. Thromb Res 2014; 133 (03) 306-307
  • 55 Bigalke B, Stellos K, Geisler T, Lindemann S, May AE, Gawaz M. Glycoprotein VI as a prognostic biomarker for cardiovascular death in patients with symptomatic coronary artery disease. Clin Res Cardiol 2010; 99 (04) 227-233
  • 56 Nurden P, Tandon N, Takizawa H. , et al. An acquired inhibitor to the GPVI platelet collagen receptor in a patient with lupus nephritis. J Thromb Haemost 2009; 7 (09) 1541-1549
  • 57 Yamashita Y, Naitoh K, Wada H. , et al. Elevated plasma levels of soluble platelet glycoprotein VI (GPVI) in patients with thrombotic microangiopathy. Thromb Res 2014; 133 (03) 440-444
  • 58 Al-Tamimi M, Gardiner EE, Thom JY. , et al. Soluble glycoprotein VI is raised in the plasma of patients with acute ischemic stroke. Stroke 2011; 42 (02) 498-500
  • 59 Andrews RK, Gardiner EE. Basic mechanisms of platelet receptor shedding. Platelets 2017; 28 (04) 319-324
  • 60 Chen Z, Mondal NK, Ding J. , et al. Activation and shedding of platelet glycoprotein IIb/IIIa under non-physiological shear stress. Mol Cell Biochem 2015; 409 (1-2): 93-101
  • 61 Chen Z, Mondal NK, Ding J, Gao J, Griffith BP, Wu ZJ. Shear-induced platelet receptor shedding by non-physiological high shear stress with short exposure time: glycoprotein Ibα and glycoprotein VI. Thromb Res 2015; 135 (04) 692-698
  • 62 Lukito P, Wong A, Jing J. , et al. Mechanical circulatory support is associated with loss of platelet receptors glycoprotein Ibα and glycoprotein VI. J Thromb Haemost 2016; 14 (11) 2253-2260
  • 63 Himmelfarb J, Nelson S, McMonagle E. , et al. Elevated plasma glycocalicin levels and decreased ristocetin-induced platelet agglutination in hemodialysis patients. Am J Kidney Dis 1998; 32 (01) 132-138
  • 64 Hu J, Mondal NK, Sorensen EN. , et al. Platelet glycoprotein Ibα ectodomain shedding and non-surgical bleeding in heart failure patients supported by continuous-flow left ventricular assist devices. J Heart Lung Transplant 2014; 33 (01) 71-79
  • 65 Muthiah K, Connor D, Ly K. , et al. Longitudinal changes in hemostatic parameters and reduced pulsatility contribute to non-surgical bleeding in patients with centrifugal continuous-flow left ventricular assist devices. J Heart Lung Transplant 2016; 35 (06) 743-751
  • 66 Baj-Krzyworzeka M, Majka M, Pratico D. , et al. Platelet-derived microparticles stimulate proliferation, survival, adhesion, and chemotaxis of hematopoietic cells. Exp Hematol 2002; 30 (05) 450-459
  • 67 Rozmyslowicz T, Majka M, Kijowski J. , et al. Platelet- and megakaryocyte-derived microparticles transfer CXCR4 receptor to CXCR4-null cells and make them susceptible to infection by X4-HIV. AIDS 2003; 17 (01) 33-42
  • 68 Barry OP, Pratico D, Lawson JA, FitzGerald GA. Transcellular activation of platelets and endothelial cells by bioactive lipids in platelet microparticles. J Clin Invest 1997; 99 (09) 2118-2127
  • 69 Hugel B, Martínez MC, Kunzelmann C, Freyssinet J-M. Membrane microparticles: two sides of the coin. Physiology (Bethesda) 2005; 20 (01) 22-27
  • 70 Nomura S, Tandon NN, Nakamura T, Cone J, Fukuhara S, Kambayashi J. High-shear-stress-induced activation of platelets and microparticles enhances expression of cell adhesion molecules in THP-1 and endothelial cells. Atherosclerosis 2001; 158 (02) 277-287
  • 71 Fox JE. Shedding of adhesion receptors from the surface of activated platelets. Blood Coagul Fibrinolysis 1994; 5 (02) 291-304
  • 72 Miyazaki Y, Nomura S, Miyake T. , et al. High shear stress can initiate both platelet aggregation and shedding of procoagulant containing microparticles. Blood 1996; 88 (09) 3456-3464
  • 73 Wiedmer T, Shattil SJ, Cunningham M, Sims PJ. Role of calcium and calpain in complement-induced vesiculation of the platelet plasma membrane and in the exposure of the platelet factor Va receptor. Biochemistry 1990; 29 (03) 623-632
  • 74 Dale GL, Friese P. Bax activators potentiate coated-platelet formation. J Thromb Haemost 2006; 4 (12) 2664-2669
  • 75 Wang Z-T, Wang Z, Hu Y-W. Possible roles of platelet-derived microparticles in atherosclerosis. Atherosclerosis 2016; 248: 10-16
  • 76 Kim HK, Song KS, Chung J-H, Lee KR, Lee S-N. Platelet microparticles induce angiogenesis in vitro. Br J Haematol 2004; 124 (03) 376-384
  • 77 Helley D, Banu E, Bouziane A. , et al. Platelet microparticles: a potential predictive factor of survival in hormone-refractory prostate cancer patients treated with docetaxel-based chemotherapy. Eur Urol 2009; 56 (03) 479-484
  • 78 Jung C, Lichtenauer M, Figulla HR. , et al. Microparticles in patients undergoing transcatheter aortic valve implantation (TAVI). Heart Vessels 2017; 32 (04) 458-466
  • 79 Diehl P, Aleker M, Helbing T. , et al. Enhanced microparticles in ventricular assist device patients predict platelet, leukocyte and endothelial cell activation. Interact Cardiovasc Thorac Surg 2010; 11 (02) 133-137
  • 80 John R, Panch S, Hrabe J. , et al. Activation of endothelial and coagulation systems in left ventricular assist device recipients. Ann Thorac Surg 2009; 88 (04) 1171-1179
  • 81 Nascimbene A, Hernandez R, George JK. , et al. Association between cell-derived microparticles and adverse events in patients with nonpulsatile left ventricular assist devices. J Heart Lung Transplant 2014; 33 (05) 470-477
  • 82 Fuchs TA, Brill A, Duerschmied D. , et al. Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci U S A 2010; 107 (36) 15880-15885
  • 83 Martinod K, Wagner DD. Thrombosis: tangled up in NETs. Blood 2014; 123 (18) 2768-2776
  • 84 Gardiner EE, Ward CM, Andrews RK. The NET effect of clot formation. J Thromb Haemost 2012; 10 (01) 133-135
  • 85 Andrews RK, Arthur JF, Gardiner EE. Neutrophil extracellular traps (NETs) and the role of platelets in infection. Thromb Haemost 2014; 112 (04) 659-665
  • 86 Jorch SK, Kubes P. An emerging role for neutrophil extracellular traps in noninfectious disease. Nat Med 2017; 23 (03) 279-287
  • 87 Kim SJ, Jenne CN. Role of platelets in neutrophil extracellular trap (NET) production and tissue injury. Semin Immunol 2016; 28 (06) 546-554
  • 88 Kubes P. The versatile platelet contributes to inflammation, infection, hemostasis, coagulation and cancer. Semin Immunol 2016; 28 (06) 535
  • 89 Noubouossie DF, Whelihan MF, Yu YB. , et al. In vitro activation of coagulation by human neutrophil DNA and histone proteins but not neutrophil extracellular traps. Blood 2017; 129 (08) 1021-1029
  • 90 Fu X, Chen J, Gallagher R, Zheng Y, Chung DW, López JA. Shear stress-induced unfolding of VWF accelerates oxidation of key methionine residues in the A1A2A3 region. Blood 2011; 118 (19) 5283-5291
  • 91 Meyer AL, Malehsa D, Bara C. , et al. Acquired von Willebrand syndrome in patients with an axial flow left ventricular assist device. Circ Heart Fail 2010; 3 (06) 675-681
  • 92 Meyer AL, Malehsa D, Budde U, Bara C, Haverich A, Strueber M. Acquired von Willebrand syndrome in patients with a centrifugal or axial continuous flow left ventricular assist device. JACC Heart Fail 2014; 2 (02) 141-145
  • 93 Mondal NK, Sorensen EN, Pham SM. , et al. Systemic inflammatory response syndrome in end-stage heart failure patients following continuous-flow left ventricular assist device implantation: differences in plasma redox status and leukocyte activation. Artif Organs 2016; 40 (05) 434-443
  • 94 Mondal NK, Li T, Chen Z. , et al. Mechanistic insight of platelet apoptosis leading to non-surgical bleeding among heart failure patients supported by continuous-flow left ventricular assist devices. Mol Cell Biochem 2017; DOI: 10.1007/s11010-017-3021-1. [Epub ahead of print]
  • 95 Arthur JF, Shen Y, Gardiner EE. , et al. TNF receptor-associated factor 4 (TRAF4) is a novel binding partner of glycoprotein Ib and glycoprotein VI in human platelets. J Thromb Haemost 2011; 9 (01) 163-172
  • 96 Arthur JF, Qiao J, Shen Y. , et al. ITAM receptor-mediated generation of reactive oxygen species in human platelets occurs via Syk-dependent and Syk-independent pathways. J Thromb Haemost 2012; 10 (06) 1133-1141
  • 97 Melki I, Tessandier N, Zufferey A, Boilard E. Platelet microvesicles in health and disease. Platelets 2017; 28 (03) 214-221
  • 98 Marin Oyarzún CP, Carestia A, Lev PR. , et al. Neutrophil extracellular trap formation and circulating nucleosomes in patients with chronic myeloproliferative neoplasms. Sci Rep 2016; 6: 38738