Semin Liver Dis 2017; 37(03): 219-230
DOI: 10.1055/s-0037-1605371
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Epigenetics in Liver Fibrosis

Veronica Massey
1   Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, North Carolina
,
Joaquin Cabezas
2   Department of Gastroenterology and Hepatology, University Hospital Marques de Valdecilla, Santander, Spain
3   Valdecilla Research Institute – IDIVAL, Santander, Spain
,
Ramon Bataller
1   Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, North Carolina
4   Division of Gastroenterology and Hepatology, Departments of Medicine and Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
5   Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh Medical Center, Pennsylvania
› Author Affiliations
Further Information

Publication History

Publication Date:
28 August 2017 (online)

Abstract

Liver fibrosis is a common consequence of chronic liver injury and is a key determinant of liver-associated morbidity and mortality. Identification of new mechanisms of fibrosis, including disease-specific molecular drivers, remains relevant to reveal novel biomarkers and therapeutic targets. Recently, greater accessibility to more advanced molecular methods that can assess changes in epigenetic regulation has stimulated more research investigating the epigenetic landscape of liver fibrosis. Such studies have revealed changes in DNA methylation, histone acetylation, and microRNAs that regulate the fibrogenic response to injury including hepatic stellate cell activation. The aim of this review is to briefly introduce the general mechanisms and epigenetic regulation of liver fibrosis and to familiarize the reader with the chief epigenetic mechanisms implicated as drivers of liver fibrosis.

 
  • References

  • 1 Mann J, Chu DC, Maxwell A. , et al. MeCP2 controls an epigenetic pathway that promotes myofibroblast transdifferentiation and fibrosis. Gastroenterology 2010; 138 (02) 705-714 , 714.e1–714.e4
  • 2 Mannaerts I, Nuytten NR, Rogiers V, Vanderkerken K, van Grunsven LA, Geerts A. Chronic administration of valproic acid inhibits activation of mouse hepatic stellate cells in vitro and in vivo. Hepatology 2010; 51 (02) 603-614
  • 3 Niki T, Rombouts K, De Bleser P. , et al. A histone deacetylase inhibitor, trichostatin A, suppresses myofibroblastic differentiation of rat hepatic stellate cells in primary culture. Hepatology 1999; 29 (03) 858-867
  • 4 Ahuja N, Sharma AR, Baylin SB. Epigenetic therapeutics: a new weapon in the war against cancer. Annu Rev Med 2016; 67: 73-89
  • 5 Morera L, Lübbert M, Jung M. Targeting histone methyltransferases and demethylases in clinical trials for cancer therapy. Clin Epigenetics 2016; 8: 57
  • 6 Ekstedt M, Hagström H, Nasr P. , et al. Fibrosis stage is the strongest predictor for disease-specific mortality in NAFLD after up to 33 years of follow-up. Hepatology 2015; 61 (05) 1547-1554
  • 7 Lackner C, Spindelboeck W, Haybaeck J. , et al. Histological parameters and alcohol abstinence determine long-term prognosis in patients with alcoholic liver disease. J Hepatol 2017; 66 (03) 610-618
  • 8 Poynard T, Bedossa P, Opolon P. Natural history of liver fibrosis progression in patients with chronic hepatitis C. The OBSVIRC, METAVIR, CLINIVIR, and DOSVIRC groups. Lancet 1997; 349 (9055): 825-832
  • 9 Poynard T, Ratziu V, Benhamou Y, Opolon P, Cacoub P, Bedossa P. Natural history of HCV infection. Best Pract Res Clin Gastroenterol 2000; 14 (02) 211-228
  • 10 Bataller R, North KE, Brenner DA. Genetic polymorphisms and the progression of liver fibrosis: a critical appraisal. Hepatology 2003; 37 (03) 493-503
  • 11 Huang H, Shiffman ML, Friedman S. , et al. A 7 gene signature identifies the risk of developing cirrhosis in patients with chronic hepatitis C. Hepatology 2007; 46 (02) 297-306
  • 12 Bataller R, Brenner DA. Hepatic stellate cells as a target for the treatment of liver fibrosis. Semin Liver Dis 2001; 21 (03) 437-451
  • 13 Bataller R, Brenner DA. Liver fibrosis. J Clin Invest 2005; 115 (02) 209-218
  • 14 Koyama Y, Brenner DA. New therapies for hepatic fibrosis. Clin Res Hepatol Gastroenterol 2015; 39 (Suppl. 01) S75-S79
  • 15 Geerts A. History, heterogeneity, developmental biology, and functions of quiescent hepatic stellate cells. Semin Liver Dis 2001; 21 (03) 311-335
  • 16 Mederacke I, Hsu CC, Troeger JS. , et al. Fate tracing reveals hepatic stellate cells as dominant contributors to liver fibrosis independent of its aetiology. Nat Commun 2013; 4: 2823
  • 17 Wells RG, Schwabe RF. Origin and function of myofibroblasts in the liver. Semin Liver Dis 2015; 35 (02) 97-106
  • 18 Koyama Y, Wang P, Liang S. , et al. Mesothelin/mucin 16 signaling in activated portal fibroblasts regulates cholestatic liver fibrosis. J Clin Invest 2017; 127 (04) 1254-1270
  • 19 Forbes SJ, Russo FP, Rey V. , et al. A significant proportion of myofibroblasts are of bone marrow origin in human liver fibrosis. Gastroenterology 2004; 126 (04) 955-963
  • 20 Ramadori G, Saile B. Portal tract fibrogenesis in the liver. Lab Invest 2004; 84 (02) 153-159
  • 21 Naito M, Hasegawa G, Ebe Y, Yamamoto T. Differentiation and function of Kupffer cells. Med Electron Microsc 2004; 37 (01) 16-28
  • 22 Thurman RG. II. Alcoholic liver injury involves activation of Kupffer cells by endotoxin. Am J Physiol 1998; 275 (4 Pt 1): G605-G611
  • 23 Shi Z, Wakil AE, Rockey DC. Strain-specific differences in mouse hepatic wound healing are mediated by divergent T helper cytokine responses. Proc Natl Acad Sci U S A 1997; 94 (20) 10663-10668
  • 24 Mehal WZ, Friedman SL. The role of inflammation and immunity in the pathogenesis of liver fibrosis. In: Gershwin ME, Vierling JM, Manns MP. , eds. Liver Immunology: Principles and Practice. Totowa, NJ: Humana Press; 2007: 111-121
  • 25 Greuter T, Shah VH. Hepatic sinusoids in liver injury, inflammation, and fibrosis: new pathophysiological insights. J Gastroenterol 2016; 51 (06) 511-519
  • 26 Kinnman N, Housset C. Peribiliary myofibroblasts in biliary type liver fibrosis. Front Biosci 2002; 7: d496-d503
  • 27 Maher JJ. Interactions between hepatic stellate cells and the immune system. Semin Liver Dis 2001; 21 (03) 417-426
  • 28 Kmieć Z. Cooperation of liver cells in health and disease. Adv Anat Embryol Cell Biol 2001; 161: III-XIII , 1–151
  • 29 Annoni G, Weiner FR, Zern MA. Increased transforming growth factor-beta 1 gene expression in human liver disease. J Hepatol 1992; 14 (2-3): 259-264
  • 30 Castilla A, Prieto J, Fausto N. Transforming growth factors beta 1 and alpha in chronic liver disease. Effects of interferon alfa therapy. N Engl J Med 1991; 324 (14) 933-940
  • 31 Gressner AM, Weiskirchen R, Breitkopf K, Dooley S. Roles of TGF-beta in hepatic fibrosis. Front Biosci 2002; 7: d793-d807
  • 32 Malizia G, Brunt EM, Peters MG, Rizzo A, Broekelmann TJ, McDonald JA. Growth factor and procollagen type I gene expression in human liver disease. Gastroenterology 1995; 108 (01) 145-156
  • 33 Dooley S, Hamzavi J, Breitkopf K. , et al. Smad7 prevents activation of hepatic stellate cells and liver fibrosis in rats. Gastroenterology 2003; 125 (01) 178-191
  • 34 Schnabl B, Kweon YO, Frederick JP, Wang XF, Rippe RA, Brenner DA. The role of Smad3 in mediating mouse hepatic stellate cell activation. Hepatology 2001; 34 (01) 89-100
  • 35 Inagaki Y, Okazaki I. Emerging insights into Transforming growth factor beta Smad signal in hepatic fibrogenesis. Gut 2007; 56 (02) 284-292
  • 36 Liu C, Gaça MD, Swenson ES, Vellucci VF, Reiss M, Wells RG. Smads 2 and 3 are differentially activated by transforming growth factor-beta (TGF-beta) in quiescent and activated hepatic stellate cells. Constitutive nuclear localization of Smads in activated cells is TGF-beta-independent. J Biol Chem 2003; 278 (13) 11721-11728
  • 37 Dooley S, Delvoux B, Lahme B, Mangasser-Stephan K, Gressner AM. Modulation of transforming growth factor beta response and signaling during transdifferentiation of rat hepatic stellate cells to myofibroblasts. Hepatology 2000; 31 (05) 1094-1106
  • 38 Inagaki Y, Truter S, Greenwel P. , et al. Regulation of the alpha 2(I) collagen gene transcription in fat-storing cells derived from a cirrhotic liver. Hepatology 1995; 22 (02) 573-579
  • 39 Nieto N, Dominguez-Rosales JA, Fontana L. , et al. Rat hepatic stellate cells contribute to the acute-phase response with increased expression of alpha1(I) and alpha1(IV) collagens, tissue inhibitor of metalloproteinase-1, and matrix-metalloproteinase-2 messenger RNAs. Hepatology 2001; 33 (03) 597-607
  • 40 Hazra S, Miyahara T, Rippe RA, Tsukamoto H. PPAR gamma and hepatic stellate cells. Comp Hepatol 2004; 3 (Suppl. 01) S7
  • 41 Sun K, Wang Q, Huang XH. PPAR gamma inhibits growth of rat hepatic stellate cells and TGF beta-induced connective tissue growth factor expression. Acta Pharmacol Sin 2006; 27 (06) 715-723
  • 42 Galli A, Crabb DW, Ceni E. , et al. Antidiabetic thiazolidinediones inhibit collagen synthesis and hepatic stellate cell activation in vivo and in vitro. Gastroenterology 2002; 122 (07) 1924-1940
  • 43 Marra F, Efsen E, Romanelli RG. , et al. Ligands of peroxisome proliferator-activated receptor gamma modulate profibrogenic and proinflammatory actions in hepatic stellate cells. Gastroenterology 2000; 119 (02) 466-478
  • 44 Marra F. Leptin and liver fibrosis: a matter of fat. Gastroenterology 2002; 122 (05) 1529-1532
  • 45 Bataller R, Ginès P, Nicolás JM. , et al. Angiotensin II induces contraction and proliferation of human hepatic stellate cells. Gastroenterology 2000; 118 (06) 1149-1156
  • 46 Jonsson JR, Clouston AD, Ando Y. , et al. Angiotensin-converting enzyme inhibition attenuates the progression of rat hepatic fibrosis. Gastroenterology 2001; 121 (01) 148-155
  • 47 Paizis G, Gilbert RE, Cooper ME. , et al. Effect of angiotensin II type 1 receptor blockade on experimental hepatic fibrogenesis. J Hepatol 2001; 35 (03) 376-385
  • 48 Oben JA, Roskams T, Yang S. , et al. Hepatic fibrogenesis requires sympathetic neurotransmitters. Gut 2004; 53 (03) 438-445
  • 49 Williams EJ, Benyon RC, Trim N. , et al. Relaxin inhibits effective collagen deposition by cultured hepatic stellate cells and decreases rat liver fibrosis in vivo. Gut 2001; 49 (04) 577-583
  • 50 Degoul F, Sutton A, Mansouri A. , et al. Homozygosity for alanine in the mitochondrial targeting sequence of superoxide dismutase and risk for severe alcoholic liver disease. Gastroenterology 2001; 120 (06) 1468-1474
  • 51 Donaldson P, Agarwal K, Craggs A, Craig W, James O, Jones D. HLA and interleukin 1 gene polymorphisms in primary biliary cirrhosis: associations with disease progression and disease susceptibility. Gut 2001; 48 (03) 397-402
  • 52 Järveläinen HA, Orpana A, Perola M, Savolainen VT, Karhunen PJ, Lindros KO. Promoter polymorphism of the CD14 endotoxin receptor gene as a risk factor for alcoholic liver disease. Hepatology 2001; 33 (05) 1148-1153
  • 53 Akuta N, Chayama K, Suzuki F. , et al. Risk factors of hepatitis C virus-related liver cirrhosis in young adults: positive family history of liver disease and transporter associated with antigen processing 2(TAP2)*0201 Allele. J Med Virol 2001; 64 (02) 109-116
  • 54 Dixon JB, Bhathal PS, Jonsson JR, Dixon AF, Powell EE, O'Brien PE. Pro-fibrotic polymorphisms predictive of advanced liver fibrosis in the severely obese. J Hepatol 2003; 39 (06) 967-971
  • 55 Powell EE, Edwards-Smith CJ, Hay JL. , et al. Host genetic factors influence disease progression in chronic hepatitis C. Hepatology 2000; 31 (04) 828-833
  • 56 Sasaki K, Tsutsumi A, Wakamiya N. , et al. Mannose-binding lectin polymorphisms in patients with hepatitis C virus infection. Scand J Gastroenterol 2000; 35 (09) 960-965
  • 57 Yoneda M, Hotta K, Nozaki Y. , et al. Association between angiotensin II type 1 receptor polymorphisms and the occurrence of nonalcoholic fatty liver disease. Liver Int 2009; 29 (07) 1078-1085
  • 58 Romeo S, Kozlitina J, Xing C. , et al. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat Genet 2008; 40 (12) 1461-1465
  • 59 Stickel F, Buch S, Lau K. , et al. Genetic variation in the PNPLA3 gene is associated with alcoholic liver injury in Caucasians. Hepatology 2011; 53 (01) 86-95
  • 60 Tian C, Stokowski RP, Kershenobich D, Ballinger DG, Hinds DA. Variant in PNPLA3 is associated with alcoholic liver disease. Nat Genet 2010; 42 (01) 21-23
  • 61 Waddington CH. The epigenotype. 1942. Int J Epidemiol 2012; 41 (01) 10-13
  • 62 Goldberg AD, Allis CD, Bernstein E. Epigenetics: a landscape takes shape. Cell 2007; 128 (04) 635-638
  • 63 Zhu H, Wang G, Qian J. Transcription factors as readers and effectors of DNA methylation. Nat Rev Genet 2016; 17 (09) 551-565
  • 64 Bogdanović O, Veenstra GJ. DNA methylation and methyl-CpG binding proteins: developmental requirements and function. Chromosoma 2009; 118 (05) 549-565
  • 65 Szulwach KE, Jin P. Integrating DNA methylation dynamics into a framework for understanding epigenetic codes. BioEssays 2014; 36 (01) 107-117
  • 66 Jurkowska RZ, Jurkowski TP, Jeltsch A. Structure and function of mammalian DNA methyltransferases. ChemBioChem 2011; 12 (02) 206-222
  • 67 Goll MG, Bestor TH. Eukaryotic cytosine methyltransferases. Annu Rev Biochem 2005; 74: 481-514
  • 68 Arita K, Ariyoshi M, Tochio H, Nakamura Y, Shirakawa M. Recognition of hemi-methylated DNA by the SRA protein UHRF1 by a base-flipping mechanism. Nature 2008; 455 (7214): 818-821
  • 69 Qian C, Li S, Jakoncic J, Zeng L, Walsh MJ, Zhou MM. Structure and hemimethylated CpG binding of the SRA domain from human UHRF1. J Biol Chem 2008; 283 (50) 34490-34494
  • 70 Tahiliani M, Koh KP, Shen Y. , et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 2009; 324 (5929): 930-935
  • 71 Mellén M, Ayata P, Dewell S, Kriaucionis S, Heintz N. MeCP2 binds to 5hmC enriched within active genes and accessible chromatin in the nervous system. Cell 2012; 151 (07) 1417-1430
  • 72 Iurlaro M, Ficz G, Oxley D. , et al. A screen for hydroxymethylcytosine and formylcytosine binding proteins suggests functions in transcription and chromatin regulation. Genome Biol 2013; 14 (10) R119
  • 73 Saha A, Wittmeyer J, Cairns BR. Chromatin remodelling: the industrial revolution of DNA around histones. Nat Rev Mol Cell Biol 2006; 7 (06) 437-447
  • 74 Chahal SS, Matthews HR, Bradbury EM. Acetylation of histone H4 and its role in chromatin structure and function. Nature 1980; 287 (5777): 76-79
  • 75 Tropberger P, Pott S, Keller C. , et al. Regulation of transcription through acetylation of H3K122 on the lateral surface of the histone octamer. Cell 2013; 152 (04) 859-872
  • 76 Tse C, Sera T, Wolffe AP, Hansen JC. Disruption of higher-order folding by core histone acetylation dramatically enhances transcription of nucleosomal arrays by RNA polymerase III. Mol Cell Biol 1998; 18 (08) 4629-4638
  • 77 Neumann H, Hancock SM, Buning R. , et al. A method for genetically installing site-specific acetylation in recombinant histones defines the effects of H3 K56 acetylation. Mol Cell 2009; 36 (01) 153-163
  • 78 Hassan AH, Prochasson P, Neely KE. , et al. Function and selectivity of bromodomains in anchoring chromatin-modifying complexes to promoter nucleosomes. Cell 2002; 111 (03) 369-379
  • 79 Huang Y, Fang J, Bedford MT, Zhang Y, Xu RM. Recognition of histone H3 lysine-4 methylation by the double Tudor domain of JMJD2A. Science 2006; 312 (5774): 748-751
  • 80 Blackledge NP, Rose NR, Klose RJ. Targeting Polycomb systems to regulate gene expression: modifications to a complex story. Nat Rev Mol Cell Biol 2015; 16 (11) 643-649
  • 81 Di Croce L, Helin K. Transcriptional regulation by Polycomb group proteins. Nat Struct Mol Biol 2013; 20 (10) 1147-1155
  • 82 Ku M, Koche RP, Rheinbay E. , et al. Genomewide analysis of PRC1 and PRC2 occupancy identifies two classes of bivalent domains. PLoS Genet 2008; 4 (10) e1000242
  • 83 Lynch MD, Smith AJ, De Gobbi M. , et al. An interspecies analysis reveals a key role for unmethylated CpG dinucleotides in vertebrate Polycomb complex recruitment. EMBO J 2012; 31 (02) 317-329
  • 84 Mendenhall EM, Koche RP, Truong T. , et al. GC-rich sequence elements recruit PRC2 in mammalian ES cells. PLoS Genet 2010; 6 (12) e1001244
  • 85 Tanay A, O'Donnell AH, Damelin M, Bestor TH. Hyperconserved CpG domains underlie Polycomb-binding sites. Proc Natl Acad Sci U S A 2007; 104 (13) 5521-5526
  • 86 Hansen KH, Bracken AP, Pasini D. , et al. A model for transmission of the H3K27me3 epigenetic mark. Nat Cell Biol 2008; 10 (11) 1291-1300
  • 87 Margueron R, Justin N, Ohno K. , et al. Role of the polycomb protein EED in the propagation of repressive histone marks. Nature 2009; 461 (7265): 762-767
  • 88 Arnold P, Schöler A, Pachkov M. , et al. Modeling of epigenome dynamics identifies transcription factors that mediate Polycomb targeting. Genome Res 2013; 23 (01) 60-73
  • 89 Brockdorff N. Noncoding RNA and Polycomb recruitment. RNA 2013; 19 (04) 429-442
  • 90 Venkatesh S, Workman JL. Histone exchange, chromatin structure and the regulation of transcription. Nat Rev Mol Cell Biol 2015; 16 (03) 178-189
  • 91 Kasten M, Szerlong H, Erdjument-Bromage H, Tempst P, Werner M, Cairns BR. Tandem bromodomains in the chromatin remodeler RSC recognize acetylated histone H3 Lys14. EMBO J 2004; 23 (06) 1348-1359
  • 92 Weber CM, Henikoff S. Histone variants: dynamic punctuation in transcription. Genes Dev 2014; 28 (07) 672-682
  • 93 Conerly ML, Teves SS, Diolaiti D, Ulrich M, Eisenman RN, Henikoff S. Changes in H2A.Z occupancy and DNA methylation during B-cell lymphomagenesis. Genome Res 2010; 20 (10) 1383-1390
  • 94 Zilberman D, Coleman-Derr D, Ballinger T, Henikoff S. Histone H2A.Z and DNA methylation are mutually antagonistic chromatin marks. Nature 2008; 456 (7218): 125-129
  • 95 Li B, Pattenden SG, Lee D. , et al. Preferential occupancy of histone variant H2AZ at inactive promoters influences local histone modifications and chromatin remodeling. Proc Natl Acad Sci U S A 2005; 102 (51) 18385-18390
  • 96 Swaminathan J, Baxter EM, Corces VG. The role of histone H2Av variant replacement and histone H4 acetylation in the establishment of Drosophila heterochromatin. Genes Dev 2005; 19 (01) 65-76
  • 97 Jin C, Felsenfeld G. Nucleosome stability mediated by histone variants H3.3 and H2A.Z. Genes Dev 2007; 21 (12) 1519-1529
  • 98 Zhang H, Roberts DN, Cairns BR. Genome-wide dynamics of Htz1, a histone H2A variant that poises repressed/basal promoters for activation through histone loss. Cell 2005; 123 (02) 219-231
  • 99 Jonas S, Izaurralde E. Towards a molecular understanding of microRNA-mediated gene silencing. Nat Rev Genet 2015; 16 (07) 421-433
  • 100 Lam JK, Chow MY, Zhang Y, Leung SW. siRNA versus miRNA as therapeutics for gene silencing. Mol Ther Nucleic Acids 2015; 4: e252
  • 101 Aravin AA, Sachidanandam R, Bourc'his D. , et al. A piRNA pathway primed by individual transposons is linked to de novo DNA methylation in mice. Mol Cell 2008; 31 (06) 785-799
  • 102 Watanabe T, Tomizawa S, Mitsuya K. , et al. Role for piRNAs and noncoding RNA in de novo DNA methylation of the imprinted mouse Rasgrf1 locus. Science 2011; 332 (6031): 848-852
  • 103 Mohammad F, Mondal T, Guseva N, Pandey GK, Kanduri C. Kcnq1ot1 noncoding RNA mediates transcriptional gene silencing by interacting with Dnmt1. Development 2010; 137 (15) 2493-2499
  • 104 Peschansky VJ, Wahlestedt C. Non-coding RNAs as direct and indirect modulators of epigenetic regulation. Epigenetics 2014; 9 (01) 3-12
  • 105 Latos PA, Pauler FM, Koerner MV. , et al. Airn transcriptional overlap, but not its lncRNA products, induces imprinted Igf2r silencing. Science 2012; 338 (6113): 1469-1472
  • 106 Murphy SK, Yang H, Moylan CA. , et al. Relationship between methylome and transcriptome in patients with nonalcoholic fatty liver disease. Gastroenterology 2013; 145 (05) 1076-1087
  • 107 Zeybel M, Hardy T, Robinson SM. , et al. Differential DNA methylation of genes involved in fibrosis progression in non-alcoholic fatty liver disease and alcoholic liver disease. Clin Epigenetics 2015; 7: 25
  • 108 El Taghdouini A, Sørensen AL, Reiner AH. , et al. Genome-wide analysis of DNA methylation and gene expression patterns in purified, uncultured human liver cells and activated hepatic stellate cells. Oncotarget 2015; 6 (29) 26729-26745
  • 109 Komatsu Y, Waku T, Iwasaki N, Ono W, Yamaguchi C, Yanagisawa J. Global analysis of DNA methylation in early-stage liver fibrosis. BMC Med Genomics 2012; 5: 5
  • 110 Page A, Paoli P, Moran Salvador E, White S, French J, Mann J. Hepatic stellate cell transdifferentiation involves genome-wide remodeling of the DNA methylation landscape. J Hepatol 2016; 64 (03) 661-673
  • 111 Asada K, Aihara Y, Takaya H. , et al. DNA methylation of angiotensin II receptor gene in nonalcoholic steatohepatitis-related liver fibrosis. World J Hepatol 2016; 8 (28) 1194-1199
  • 112 Bian EB, Huang C, Ma TT. , et al. DNMT1-mediated PTEN hypermethylation confers hepatic stellate cell activation and liver fibrogenesis in rats. Toxicol Appl Pharmacol 2012; 264 (01) 13-22
  • 113 Bian EB, Huang C, Wang H. , et al. Repression of Smad7 mediated by DNMT1 determines hepatic stellate cell activation and liver fibrosis in rats. Toxicol Lett 2014; 224 (02) 175-185
  • 114 Tao H, Huang C, Yang JJ. , et al. MeCP2 controls the expression of RASAL1 in the hepatic fibrosis in rats. Toxicology 2011; 290 (2-3): 327-333
  • 115 Wu K, Ye C, Lin L. , et al. Inhibiting miR-21 attenuates experimental hepatic fibrosis by suppressing both the ERK1 pathway in HSC and hepatocyte EMT. Clin Sci (Lond) 2016; 130 (16) 1469-1480
  • 116 Mann J, Oakley F, Akiboye F, Elsharkawy A, Thorne AW, Mann DA. Regulation of myofibroblast transdifferentiation by DNA methylation and MeCP2: implications for wound healing and fibrogenesis. Cell Death Differ 2007; 14 (02) 275-285
  • 117 Yang JJ, Tao H, Huang C. , et al. DNA methylation and MeCP2 regulation of PTCH1 expression during rats hepatic fibrosis. Cell Signal 2013; 25 (05) 1202-1211
  • 118 Zhu NL, Wang J, Tsukamoto H. The Necdin-Wnt pathway causes epigenetic peroxisome proliferator-activated receptor gamma repression in hepatic stellate cells. J Biol Chem 2010; 285 (40) 30463-30471
  • 119 Jiang Y, Wang S, Zhao Y. , et al. Histone H3K9 demethylase JMJD1A modulates hepatic stellate cells activation and liver fibrosis by epigenetically regulating peroxisome proliferator-activated receptor γ. FASEB J 2015; 29 (05) 1830-1841
  • 120 Perugorria MJ, Wilson CL, Zeybel M. , et al. Histone methyltransferase ASH1 orchestrates fibrogenic gene transcription during myofibroblast transdifferentiation. Hepatology 2012; 56 (03) 1129-1139
  • 121 Kim JS, Shukla SD. Histone h3 modifications in rat hepatic stellate cells by ethanol. Alcohol Alcohol 2005; 40 (05) 367-372
  • 122 Watanabe T, Tajima H, Hironori H. , et al. Sodium valproate blocks the transforming growth factor (TGF)-β1 autocrine loop and attenuates the TGF-β1-induced collagen synthesis in a human hepatic stellate cell line. Int J Mol Med 2011; 28 (06) 919-925
  • 123 Westra IM, Oosterhuis D, Groothuis GM, Olinga P. The effect of antifibrotic drugs in rat precision-cut fibrotic liver slices. PLoS One 2014; 9 (04) e95462
  • 124 Liu Y, Wang Z, Wang J. , et al. A histone deacetylase inhibitor, largazole, decreases liver fibrosis and angiogenesis by inhibiting transforming growth factor-β and vascular endothelial growth factor signalling. Liver Int 2013; 33 (04) 504-515
  • 125 Park KC, Park JH, Jeon JY. , et al. A new histone deacetylase inhibitor improves liver fibrosis in BDL rats through suppression of hepatic stellate cells. Br J Pharmacol 2014; 171 (21) 4820-4830
  • 126 Li X, Wu XQ, Xu T. , et al. Role of histone deacetylases(HDACs) in progression and reversal of liver fibrosis. Toxicol Appl Pharmacol 2016; 306: 58-68
  • 127 Qin L, Han YP. Epigenetic repression of matrix metalloproteinases in myofibroblastic hepatic stellate cells through histone deacetylases 4: implication in tissue fibrosis. Am J Pathol 2010; 177 (04) 1915-1928
  • 128 Bai X, Wu L, Liang T. , et al. Overexpression of myocyte enhancer factor 2 and histone hyperacetylation in hepatocellular carcinoma. J Cancer Res Clin Oncol 2008; 134 (01) 83-91
  • 129 Harikrishnan KN, Chow MZ, Baker EK. , et al. Brahma links the SWI/SNF chromatin-remodeling complex with MeCP2-dependent transcriptional silencing. Nat Genet 2005; 37 (03) 254-264
  • 130 Tian W, Xu H, Fang F, Chen Q, Xu Y, Shen A. Brahma-related gene 1 bridges epigenetic regulation of proinflammatory cytokine production to steatohepatitis in mice. Hepatology 2013; 58 (02) 576-588
  • 131 Xi Q, He W, Zhang XH, Le HV, Massagué J. Genome-wide impact of the BRG1 SWI/SNF chromatin remodeler on the transforming growth factor beta transcriptional program. J Biol Chem 2008; 283 (02) 1146-1155
  • 132 Zhang Z, Zha Y, Hu W. , et al. The autoregulatory feedback loop of microRNA-21/programmed cell death protein 4/activation protein-1 (MiR-21/PDCD4/AP-1) as a driving force for hepatic fibrosis development. J Biol Chem 2013; 288 (52) 37082-37093
  • 133 Wei J, Feng L, Li Z, Xu G, Fan X. MicroRNA-21 activates hepatic stellate cells via PTEN/Akt signaling. Biomed Pharmacother 2013; 67 (05) 387-392
  • 134 Zhao J, Tang N, Wu K. , et al. MiR-21 simultaneously regulates ERK1 signaling in HSC activation and hepatocyte EMT in hepatic fibrosis. PLoS One 2014; 9 (10) e108005
  • 135 Li X, Chen Y, Wu S. , et al. microRNA-34a and microRNA-34c promote the activation of human hepatic stellate cells by targeting peroxisome proliferator-activated receptor γ. Mol Med Rep 2015; 11 (02) 1017-1024
  • 136 Li ZJ, Ou-Yang PH, Han XP. Profibrotic effect of miR-33a with Akt activation in hepatic stellate cells. Cell Signal 2014; 26 (01) 141-148
  • 137 Lu L, Wang J, Lu H. , et al. MicroRNA-130a and -130b enhance activation of hepatic stellate cells by suppressing PPARγ expression: A rat fibrosis model study. Biochem Biophys Res Commun 2015; 465 (03) 387-393
  • 138 Tiao MM, Wang FS, Huang LT. , et al. MicroRNA-29a protects against acute liver injury in a mouse model of obstructive jaundice via inhibition of the extrinsic apoptosis pathway. Apoptosis 2014; 19 (01) 30-41
  • 139 Kwiecinski M, Elfimova N, Noetel A. , et al. Expression of platelet-derived growth factor-C and insulin-like growth factor I in hepatic stellate cells is inhibited by miR-29. Lab Invest 2012; 92 (07) 978-987
  • 140 Kwiecinski M, Noetel A, Elfimova N. , et al. Hepatocyte growth factor (HGF) inhibits collagen I and IV synthesis in hepatic stellate cells by miRNA-29 induction. PLoS One 2011; 6 (09) e24568
  • 141 Zhang Y, Ghazwani M, Li J. , et al. MiR-29b inhibits collagen maturation in hepatic stellate cells through down-regulating the expression of HSP47 and lysyl oxidase. Biochem Biophys Res Commun 2014; 446 (04) 940-944
  • 142 Liang C, Bu S, Fan X. Suppressive effect of microRNA-29b on hepatic stellate cell activation and its crosstalk with TGF-β1/Smad3. Cell Biochem Funct 2016; 34 (05) 326-333
  • 143 Li J, Ghazwani M, Zhang Y. , et al. miR-122 regulates collagen production via targeting hepatic stellate cells and suppressing P4HA1 expression. J Hepatol 2013; 58 (03) 522-528
  • 144 Zeng C, Wang YL, Xie C. , et al. Identification of a novel TGF-β-miR-122-fibronectin 1/serum response factor signaling cascade and its implication in hepatic fibrogenesis. Oncotarget 2015; 6 (14) 12224-12233
  • 145 Lakner AM, Steuerwald NM, Walling TL. , et al. Inhibitory effects of microRNA 19b in hepatic stellate cell-mediated fibrogenesis. Hepatology 2012; 56 (01) 300-310
  • 146 Ge S, Xie J, Liu F, He J, He J. MicroRNA-19b reduces hepatic stellate cell proliferation by targeting GRB2 in hepatic fibrosis models in vivo and in vitro as part of the inhibitory effect of estradiol. J Cell Biochem 2015; 116 (11) 2455-2464
  • 147 Du J, Niu X, Wang Y. , et al. MiR-146a-5p suppresses activation and proliferation of hepatic stellate cells in nonalcoholic fibrosing steatohepatitis through directly targeting Wnt1 and Wnt5a. Sci Rep 2015; 5: 16163
  • 148 He Y, Huang C, Sun X, Long XR, Lv XW, Li J. MicroRNA-146a modulates TGF-beta1-induced hepatic stellate cell proliferation by targeting SMAD4. Cell Signal 2012; 24 (10) 1923-1930
  • 149 Sekiya Y, Ogawa T, Iizuka M, Yoshizato K, Ikeda K, Kawada N. Down-regulation of cyclin E1 expression by microRNA-195 accounts for interferon-β-induced inhibition of hepatic stellate cell proliferation. J Cell Physiol 2011; 226 (10) 2535-2542
  • 150 Dai W, Zhao J, Tang N. , et al. MicroRNA-155 attenuates activation of hepatic stellate cell by simultaneously preventing EMT process and ERK1 signalling pathway. Liver Int 2015; 35 (04) 1234-1243
  • 151 Zheng J, Yu F, Dong P. , et al. Long non-coding RNA PVT1 activates hepatic stellate cells through competitively binding microRNA-152. Oncotarget 2016; 7 (39) 62886-62897
  • 152 Yu F, Lu Z, Chen B, Dong P, Zheng J. Identification of a novel lincRNA-p21-miR-181b-PTEN signaling cascade in liver fibrosis. Mediators Inflamm 2016; 2016: 9856538
  • 153 Yu F, Zheng J, Mao Y. , et al. Long non-coding RNA growth arrest-specific transcript 5 (GAS5) inhibits liver fibrogenesis through a mechanism of competing endogenous RNA. J Biol Chem 2015; 290 (47) 28286-28298
  • 154 He Y, Wu YT, Huang C. , et al. Inhibitory effects of long noncoding RNA MEG3 on hepatic stellate cells activation and liver fibrogenesis. Biochim Biophys Acta 2014; 1842 (11) 2204-2215
  • 155 Hardy T, Mann DA. Epigenetics in liver disease: from biology to therapeutics. Gut 2016; 65 (11) 1895-1905
  • 156 Farinelli E, Giampaoli D, Cenciarini A, Cercado E, Verrotti A. Valproic acid and nonalcoholic fatty liver disease: a possible association?. World J Hepatol 2015; 7 (09) 1251-1257
  • 157 Ikura Y, Iwasa Y, Ueda M. Valproic acid administration for hepatic fibrosis: a balance between antifibrotic efficacy and hepatotoxicity. Hepatology 2010; 51 (06) 2227-2228 , author reply 2228
  • 158 Sato K, Ueda Y, Ueno K, Okamoto K, Iizuka H, Katsuda S. Hepatocellular carcinoma and nonalcoholic steatohepatitis developing during long-term administration of valproic acid. Virchows Arch 2005; 447 (06) 996-999
  • 159 Hardy T, Zeybel M, Day CP. , et al. Plasma DNA methylation: a potential biomarker for stratification of liver fibrosis in non-alcoholic fatty liver disease. Gut [Published Online First]. 2016 : Available at: http://gut.bmj.com/content/early/2016/2003/2021/gutjnl-2016-311526.long . Accessed October 28th, 2016
  • 160 Huang J, Yu X, Fries JW, Zhang L, Odenthal M. MicroRNA function in the profibrogenic interplay upon chronic liver disease. Int J Mol Sci 2014; 15 (06) 9360-9371
  • 161 Page A, Paoli PP, Hill SJ. , et al. Alcohol directly stimulates epigenetic modifications in hepatic stellate cells. J Hepatol 2015; 62 (02) 388-397
  • 162 Roderburg C, Urban GW, Bettermann K. , et al. Micro-RNA profiling reveals a role for miR-29 in human and murine liver fibrosis. Hepatology 2011; 53 (01) 209-218
  • 163 Zhang J, Jiao J, Cermelli S. , et al. miR-21 inhibition reduces liver fibrosis and prevents tumor development by inducing apoptosis of CD24+ progenitor cells. Cancer Res 2015; 75 (09) 1859-1867