Semin intervent Radiol 2017; 34(03): 233-238
DOI: 10.1055/s-0037-1604296
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Vascular Anomalies Caused by Abnormal Signaling within Endothelial Cells: Targets for Novel Therapies

Ha-Long Nguyen
1   Laboratory of Human Molecular Genetics, de Duve Institute, University of Louvain (UCL), Brussels, Belgium
,
Laurence M. Boon
1   Laboratory of Human Molecular Genetics, de Duve Institute, University of Louvain (UCL), Brussels, Belgium
2   Center for Vascular Anomalies, Cliniques Universitaires Saint-Luc, University of Louvain (UCL), Brussels, Belgium
,
Miikka Vikkula
1   Laboratory of Human Molecular Genetics, de Duve Institute, University of Louvain (UCL), Brussels, Belgium
2   Center for Vascular Anomalies, Cliniques Universitaires Saint-Luc, University of Louvain (UCL), Brussels, Belgium
› Author Affiliations
Further Information

Publication History

Publication Date:
11 September 2017 (online)

Abstract

Vascular anomalies arise as a consequence of improper development and maintenance of the vasculature. Our knowledge on the pathophysiological bases of vascular anomalies has skyrocketed during the past 5 years. It is becoming clear that common intracellular signaling pathways are often activated by mutations, causing endothelial cell dysfunction. These mutations cause hyperactivation of two major intracellular signaling pathways that may be controlled by inhibitors developed for cancer treatment. Although we do not know yet all the downstream effects, it has become evident that normalization of the abnormal signaling is an interesting target for therapy. This is a major paradigm change, as developmental malformations were considered to be inert to any molecular treatment.

 
  • References

  • 1 Bayrak-Toydemir P, McDonald J, Akarsu N. , et al. A fourth locus for hereditary hemorrhagic telangiectasia maps to chromosome 7. Am J Med Genet A 2006; 140 (20) 2155-2162
  • 2 Cole SG, Begbie ME, Wallace GM, Shovlin CL. A new locus for hereditary haemorrhagic telangiectasia (HHT3) maps to chromosome 5. J Med Genet 2005; 42 (07) 577-582
  • 3 Gallione CJ, Richards JA, Letteboer TG. , et al. SMAD4 mutations found in unselected HHT patients. J Med Genet 2006; 43 (10) 793-797
  • 4 Johnson DW, Berg JN, Baldwin MA. , et al. Mutations in the activin receptor-like kinase 1 gene in hereditary haemorrhagic telangiectasia type 2. Nat Genet 1996; 13 (02) 189-195
  • 5 McAllister KA, Grogg KM, Johnson DW. , et al. Endoglin, a TGF-beta binding protein of endothelial cells, is the gene for hereditary haemorrhagic telangiectasia type 1. Nat Genet 1994; 8 (04) 345-351
  • 6 Brouillard P, Boon LM, Mulliken JB. , et al. Mutations in a novel factor, glomulin, are responsible for glomuvenous malformations (“glomangiomas”). Am J Hum Genet 2002; 70 (04) 866-874
  • 7 Sahoo T, Johnson EW, Thomas JW. , et al. Mutations in the gene encoding KRIT1, a Krev-1/rap1a binding protein, cause cerebral cavernous malformations (CCM1). Hum Mol Genet 1999; 8 (12) 2325-2333
  • 8 Liquori CL, Berg MJ, Siegel AM. , et al. Mutations in a gene encoding a novel protein containing a phosphotyrosine-binding domain cause type 2 cerebral cavernous malformations. Am J Hum Genet 2003; 73 (06) 1459-1464
  • 9 Bergametti F, Denier C, Labauge P. , et al; Société Française de Neurochirurgie. Mutations within the programmed cell death 10 gene cause cerebral cavernous malformations. Am J Hum Genet 2005; 76 (01) 42-51
  • 10 Eerola I, Boon LM, Mulliken JB. , et al. Capillary malformation-arteriovenous malformation, a new clinical and genetic disorder caused by RASA1 mutations. Am J Hum Genet 2003; 73 (06) 1240-1249
  • 11 Vikkula M, Boon LM, Carraway III KL. , et al. Vascular dysmorphogenesis caused by an activating mutation in the receptor tyrosine kinase TIE2. Cell 1996; 87 (07) 1181-1190
  • 12 Limaye N, Wouters V, Uebelhoer M. , et al. Somatic mutations in angiopoietin receptor gene TEK cause solitary and multiple sporadic venous malformations. Nat Genet 2009; 41 (01) 118-124
  • 13 Amyere M, Aerts V, Brouillard P. , et al. Somatic uniparental isodisomy explains multifocality of glomuvenous malformations. Am J Hum Genet 2013; 92 (02) 188-196
  • 14 Revencu N, Boon LM, Mendola A. , et al. RASA1 mutations and associated phenotypes in 68 families with capillary malformation-arteriovenous malformation. Hum Mutat 2013; 34 (12) 1632-1641
  • 15 Akers AL, Johnson E, Steinberg GK, Zabramski JM, Marchuk DA. Biallelic somatic and germline mutations in cerebral cavernous malformations (CCMs): evidence for a two-hit mechanism of CCM pathogenesis. Hum Mol Genet 2009; 18 (05) 919-930
  • 16 Boon LM, Mulliken JB, Vikkula M. , et al. Assignment of a locus for dominantly inherited venous malformations to chromosome 9p. Hum Mol Genet 1994; 3 (09) 1583-1587
  • 17 Soblet J, Limaye N, Uebelhoer M, Boon LM, Vikkula M. Variable somatic TIE2 mutations in half of sporadic venous malformations. Mol Syndromol 2013; 4 (04) 179-183
  • 18 Wouters V, Limaye N, Uebelhoer M. , et al. Hereditary cutaneomucosal venous malformations are caused by TIE2 mutations with widely variable hyper-phosphorylating effects. Eur J Hum Genet 2010; 18 (04) 414-420
  • 19 McIntyre BA, Brouillard P, Aerts V, Gutierrez-Roelens I, Vikkula M. Glomulin is predominantly expressed in vascular smooth muscle cells in the embryonic and adult mouse. Gene Expr Patterns 2004; 4 (03) 351-358
  • 20 Faes S, Dormond O. PI3K and AKT: unfaithful partners in cancer. Int J Mol Sci 2015; 16 (09) 21138-21152
  • 21 Soblet J, Kangas J, Nätynki M. , et al. Blue rubber bleb nevus (BRBN) syndrome is caused by somatic TEK (TIE2) mutations. J Invest Dermatol 2017; 137 (01) 207-216
  • 22 Uebelhoer M, Nätynki M, Kangas J. , et al. Venous malformation-causative TIE2 mutations mediate an AKT-dependent decrease in PDGFB. Hum Mol Genet 2013; 22 (17) 3438-3448
  • 23 Limaye N, Kangas J, Mendola A. , et al. Somatic activating PIK3CA mutations cause venous malformation. Am J Hum Genet 2015; 97 (06) 914-921
  • 24 Luks VL, Kamitaki N, Vivero MP. , et al. Lymphatic and other vascular malformative/overgrowth disorders are caused by somatic mutations in PIK3CA. J Pediatr 2015; 166 (04) 1048-54.e1 , 5
  • 25 Maclellan RA, Luks VL, Vivero MP. , et al. PIK3CA activating mutations in facial infiltrating lipomatosis. Plast Reconstr Surg 2014; 133 (01) 12e-19e
  • 26 Kurek KC, Luks VL, Ayturk UM. , et al. Somatic mosaic activating mutations in PIK3CA cause CLOVES syndrome. Am J Hum Genet 2012; 90 (06) 1108-1115
  • 27 Boscolo E, Coma S, Luks VL. , et al. AKT hyper-phosphorylation associated with PI3K mutations in lymphatic endothelial cells from a patient with lymphatic malformation. Angiogenesis 2015; 18 (02) 151-162
  • 28 Mester J, Eng C. When overgrowth bumps into cancer: the PTEN-opathies. Am J Med Genet C Semin Med Genet 2013; 163C (02) 114-121
  • 29 Boscolo E, Limaye N, Huang L. , et al. Rapamycin improves TIE2-mutated venous malformation in murine model and human subjects. J Clin Invest 2015; 125 (09) 3491-3504
  • 30 Lackner H, Karastaneva A, Schwinger W. , et al. Sirolimus for the treatment of children with various complicated vascular anomalies. Eur J Pediatr 2015; 174 (12) 1579-1584
  • 31 Adams DM, Trenor III CC, Hammill AM. , et al. Efficacy and safety of sirolimus in the treatment of complicated vascular anomalies. Pediatrics 2016; 137 (02) e20153257
  • 32 Sundaram MV. Canonical RTK-Ras-ERK signaling and related alternative pathways. WormBook 2013; 1-38 . doi: 10.1895/wormbook.1.80.2.
  • 33 Tidyman WE, Rauen KA. The RASopathies: developmental syndromes of Ras/MAPK pathway dysregulation. Curr Opin Genet Dev 2009; 19 (03) 230-236
  • 34 Boon LM, Mulliken JB, Vikkula M. RASA1: variable phenotype with capillary and arteriovenous malformations. Curr Opin Genet Dev 2005; 15 (03) 265-269
  • 35 Henkemeyer M, Rossi DJ, Holmyard DP. , et al. Vascular system defects and neuronal apoptosis in mice lacking ras GTPase-activating protein. Nature 1995; 377 (6551): 695-701
  • 36 Shirley MD, Tang H, Gallione CJ. , et al. Sturge-Weber syndrome and port-wine stains caused by somatic mutation in GNAQ. N Engl J Med 2013; 368 (21) 1971-1979
  • 37 Couto JA, Huang L, Vivero MP. , et al. Endothelial cells from capillary malformations are enriched for somatic GNAQ mutations. Plast Reconstr Surg 2016; 137 (01) 77e-82e
  • 38 Tan W, Nadora DM, Gao L, Wang G, Mihm Jr MC, Nelson JS. The somatic GNAQ mutation (R183Q) is primarily located within the blood vessels of port wine stains. J Am Acad Dermatol 2016; 74 (02) 380-383
  • 39 Ayturk UM, Couto JA, Hann S. , et al. Somatic activating mutations in GNAQ and GNA11 are associated with congenital hemangioma. Am J Hum Genet 2016; 98 (04) 789-795
  • 40 Thomas AC, Zeng Z, Rivière JB. , et al. Mosaic activating mutations in GNA11 and GNAQ are associated with phakomatosis pigmentovascularis and extensive dermal melanocytosis. J Invest Dermatol 2016; 136 (04) 770-778
  • 41 Groesser L, Peterhof E, Evert M, Landthaler M, Berneburg M, Hafner C. BRAF and RAS mutations in sporadic and secondary pyogenic granuloma. J Invest Dermatol 2016; 136 (02) 481-486
  • 42 Lim YH, Douglas SR, Ko CJ. , et al. Somatic activating RAS mutations cause vascular tumors including pyogenic granuloma. J Invest Dermatol 2015; 135 (06) 1698-1700
  • 43 Pagenstecher A, Stahl S, Sure U, Felbor U. A two-hit mechanism causes cerebral cavernous malformations: complete inactivation of CCM1, CCM2 or CCM3 in affected endothelial cells. Hum Mol Genet 2009; 18 (05) 911-918
  • 44 Uhlik MT, Abell AN, Johnson NL. , et al. Rac-MEKK3-MKK3 scaffolding for p38 MAPK activation during hyperosmotic shock. Nat Cell Biol 2003; 5 (12) 1104-1110
  • 45 Zhou Z, Tang AT, Wong WY. , et al. Cerebral cavernous malformations arise from endothelial gain of MEKK3-KLF2/4 signalling. Nature 2016; 532 (7597): 122-126
  • 46 Couto JA, Vivero MP, Kozakewich HP. , et al. A somatic MAP3K3 mutation is associated with verrucous venous malformation. Am J Hum Genet 2015; 96 (03) 480-486
  • 47 Massagué J. TGFβ signalling in context. Nat Rev Mol Cell Biol 2012; 13 (10) 616-630
  • 48 HHT Mutation Database. Available at: http://www.arup.utah.edu/database/HHT . Accessed: November 2016
  • 49 David L, Mallet C, Mazerbourg S, Feige JJ, Bailly S. Identification of BMP9 and BMP10 as functional activators of the orphan activin receptor-like kinase 1 (ALK1) in endothelial cells. Blood 2007; 109 (05) 1953-1961
  • 50 Wooderchak-Donahue WL, McDonald J, O'Fallon B. , et al. BMP9 mutations cause a vascular-anomaly syndrome with phenotypic overlap with hereditary hemorrhagic telangiectasia. Am J Hum Genet 2013; 93 (03) 530-537
  • 51 Lebrin F, Srun S, Raymond K. , et al. Thalidomide stimulates vessel maturation and reduces epistaxis in individuals with hereditary hemorrhagic telangiectasia. Nat Med 2010; 16 (04) 420-428
  • 52 Dupuis-Girod S, Ginon I, Saurin JC. , et al. Bevacizumab in patients with hereditary hemorrhagic telangiectasia and severe hepatic vascular malformations and high cardiac output. JAMA 2012; 307 (09) 948-955