Neuropediatrics 2017; 48(04): 247-261
DOI: 10.1055/s-0037-1604154
Review Article
Georg Thieme Verlag KG Stuttgart · New York

Congenital Muscular Dystrophies and Myopathies: An Overview and Update

David C. Schorling
1   Division of Neuropediatrics and Muscle Disorders, Medical Center, University of Freiburg, Freiburg, Germany
,
Janbernd Kirschner
1   Division of Neuropediatrics and Muscle Disorders, Medical Center, University of Freiburg, Freiburg, Germany
,
Carsten G. Bönnemann
2   Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States
› Author Affiliations
Further Information

Publication History

07 June 2017

10 June 2017

Publication Date:
02 July 2017 (online)

Abstract

With continuous deciphering of the genetic background of congenital muscular dystrophies and congenital myopathies, some of the historic classifications based on clinical phenotypes or histopathological similarities have become blurred. With a growing number of associated genes, the general understanding of these disorders is shifting to a more genotype-based classification. Furthermore, establishing of the right genetic diagnosis involves new aspects of clinical care and therapeutic considerations for gene-specific phenotypes and pathology. In this review, we give an overview of the wide spectrum of clinical phenotypes of congenital muscular dystrophies and congenital myopathies, outline diagnostic considerations, and summarize recent advances in research for selected diseases.

 
  • References

  • 1 Hoffman EP, Brown Jr RH, Kunkel LM. Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell 1987; 51 (06) 919-928
  • 2 Kirschner J, Bönnemann CG. The congenital and limb-girdle muscular dystrophies: sharpening the focus, blurring the boundaries. Arch Neurol 2004; 61 (02) 189-199
  • 3 Kobayashi O, Hayashi Y, Arahata K, Ozawa E, Nonaka I. Congenital muscular dystrophy: clinical and pathologic study of 50 patients with the classical (occidental) merosin-positive form. Neurology 1996; 46 (03) 815-818
  • 4 Batten F. Three cases of myopathy, infantile type. Brain 1903; 26: 147-148
  • 5 Bönnemann CG, Wang CH, Quijano-Roy S. , et al; Members of International Standard of Care Committee for Congenital Muscular Dystrophies. Diagnostic approach to the congenital muscular dystrophies. Neuromuscul Disord 2014; 24 (04) 289-311
  • 6 Muntoni F, Voit T. The congenital muscular dystrophies in 2004: a century of exciting progress. Neuromuscul Disord 2004; 14 (10) 635-649
  • 7 Kang PB, Morrison L, Iannaccone ST. , et al; Guideline Development Subcommittee of the American Academy of Neurology and the Practice Issues Review Panel of the American Association of Neuromuscular & Electrodiagnostic Medicine. Evidence-based guideline summary: evaluation, diagnosis, and management of congenital muscular dystrophy: Report of the Guideline Development Subcommittee of the American Academy of Neurology and the Practice Issues Review Panel of the American Association of Neuromuscular & Electrodiagnostic Medicine. Neurology 2015; 84 (13) 1369-1378
  • 8 Mah JK, Korngut L, Fiest KM. , et al. A systematic review and meta-analysis on the epidemiology of the muscular dystrophies. Can J Neurol Sci 2016; 43 (01) 163-177
  • 9 Ullrich O. Kongenitale atonisch-sklerotische Muskeldystrophie, ein weiterer Typus der heredodegenerativen Erkrankungen des neuromuskulären Systems. Z Gesamte Neurol Psychiatr 1930; 126 (01) 171-201
  • 10 Camacho Vanegas O, Bertini E, Zhang RZ. , et al. Ullrich scleroatonic muscular dystrophy is caused by recessive mutations in collagen type VI. Proc Natl Acad Sci U S A 2001; 98 (13) 7516-7521
  • 11 Demir E, Sabatelli P, Allamand V. , et al. Mutations in COL6A3 cause severe and mild phenotypes of Ullrich congenital muscular dystrophy. Am J Hum Genet 2002; 70 (06) 1446-1458
  • 12 Pan T-C, Zhang R-Z, Sudano DG, Marie SK, Bönnemann CG, Chu M-L. New molecular mechanism for Ullrich congenital muscular dystrophy: a heterozygous in-frame deletion in the COL6A1 gene causes a severe phenotype. Am J Hum Genet 2003; 73 (02) 355-369
  • 13 Baker NL, Mörgelin M, Peat R. , et al. Dominant collagen VI mutations are a common cause of Ullrich congenital muscular dystrophy. Hum Mol Genet 2005; 14 (02) 279-293
  • 14 Giusti B, Lucarini L, Pietroni V. , et al. Dominant and recessive COL6A1 mutations in Ullrich scleroatonic muscular dystrophy. Ann Neurol 2005; 58 (03) 400-410
  • 15 Lampe AK, Bushby KMD. Collagen VI related muscle disorders. J Med Genet 2005; 42 (09) 673-685
  • 16 Gualandi F, Urciuolo A, Martoni E. , et al. Autosomal recessive Bethlem myopathy. Neurology 2009; 73 (22) 1883-1891
  • 17 Bönnemann CG. The collagen VI-related myopathies Ullrich congenital muscular dystrophy and Bethlem myopathy. Handb Clin Neurol 2011; 101: 81-96
  • 18 Nadeau A, Kinali M, Main M. , et al. Natural history of Ullrich congenital muscular dystrophy. Neurology 2009; 73 (01) 25-31
  • 19 Helbling-Leclerc A, Zhang X, Topaloglu H. , et al. Mutations in the laminin alpha 2-chain gene (LAMA2) cause merosin-deficient congenital muscular dystrophy. Nat Genet 1995; 11 (02) 216-218
  • 20 Zhang X, Vuolteenaho R, Tryggvason K. Structure of the human laminin alpha2-chain gene (LAMA2), which is affected in congenital muscular dystrophy. J Biol Chem 1996; 271 (44) 27664-27669
  • 21 Philpot J, Pennock J, Cowan F. , et al. Brain magnetic resonance imaging abnormalities in merosin-positive congenital muscular dystrophy. Eur J Paediatr Neurol 2000; 4 (03) 109-114
  • 22 Philpot J, Cowan F, Pennock J. , et al. Merosin-deficient congenital muscular dystrophy: the spectrum of brain involvement on magnetic resonance imaging. Neuromuscul Disord 1999; 9 (02) 81-85
  • 23 Jones KJ, Morgan G, Johnston H. , et al. The expanding phenotype of laminin alpha2 chain (merosin) abnormalities: case series and review. J Med Genet 2001; 38 (10) 649-657
  • 24 Marino M, Stoilova T, Giorgi C. , et al. SEPN1, an endoplasmic reticulum-localized selenoprotein linked to skeletal muscle pathology, counteracts hyperoxidation by means of redox-regulating SERCA2 pump activity. Hum Mol Genet 2015; 24 (07) 1843-1855
  • 25 Moghadaszadeh B, Petit N, Jaillard C. , et al. Mutations in SEPN1 cause congenital muscular dystrophy with spinal rigidity and restrictive respiratory syndrome. Nat Genet 2001; 29 (01) 17-18
  • 26 Ferreiro A, Quijano-Roy S, Pichereau C. , et al. Mutations of the selenoprotein N gene, which is implicated in rigid spine muscular dystrophy, cause the classical phenotype of multiminicore disease: reassessing the nosology of early-onset myopathies. Am J Hum Genet 2002; 71 (04) 739-749
  • 27 Ferreiro A, Ceuterick-de Groote C, Marks JJ. , et al. Desmin-related myopathy with Mallory body-like inclusions is caused by mutations of the selenoprotein N gene. Ann Neurol 2004; 55 (05) 676-686
  • 28 Clarke NF, Kidson W, Quijano-Roy S. , et al. SEPN1: associated with congenital fiber-type disproportion and insulin resistance. Ann Neurol 2006; 59 (03) 546-552
  • 29 Mercuri E, Poppe M, Quinlivan R. , et al. Extreme variability of phenotype in patients with an identical missense mutation in the lamin A/C gene: from congenital onset with severe phenotype to milder classic Emery-Dreifuss variant. Arch Neurol 2004; 61 (05) 690-694
  • 30 Quijano-Roy S, Mbieleu B, Bönnemann CG. , et al. De novo LMNA mutations cause a new form of congenital muscular dystrophy. Ann Neurol 2008; 64 (02) 177-186
  • 31 D'Amico A, Haliloglu G, Richard P. , et al. Two patients with ‘Dropped head syndrome’ due to mutations in LMNA or SEPN1 genes. Neuromuscul Disord 2005; 15 (08) 521-524
  • 32 Chemla JC, Kanter RJ, Carboni MP, Smith EC. Two children with “dropped head” syndrome due to lamin A/C mutations. Muscle Nerve 2010; 42 (05) 839-841
  • 33 Hayashi YK, Ogawa M, Tagawa K. , et al. Selective deficiency of alpha-dystroglycan in Fukuyama-type congenital muscular dystrophy. Neurology 2001; 57 (01) 115-121
  • 34 Brockington M, Blake DJ, Prandini P. , et al. Mutations in the fukutin-related protein gene (FKRP) cause a form of congenital muscular dystrophy with secondary laminin alpha2 deficiency and abnormal glycosylation of alpha-dystroglycan. Am J Hum Genet 2001; 69 (06) 1198-1209
  • 35 Mercuri E, Muntoni F. The ever-expanding spectrum of congenital muscular dystrophies. Ann Neurol 2012; 72 (01) 9-17
  • 36 Domingos J, Sarkozy A, Scoto M, Muntoni F. Dystrophinopathies and limb-girdle muscular dystrophies. Neuropediatrics 2017
  • 37 Osawa M, Arai Y, Ikenaka H. , et al. Fukuyama type congenital progressive muscular dystrophy. Acta Paediatr Jpn 1991; 33 (02) 261-269
  • 38 Fukuyama Y, Osawa M, Suzuki H. Congenital progressive muscular dystrophy of the Fukuyama type - clinical, genetic and pathological considerations. Brain Dev 1981; 3 (01) 1-29
  • 39 Santavuori A, Leisti K, Kruus S. Muscle, eye and brain disease: a new syndrome. Docum Ophtal Proc Ser 1978; 17: 393-396
  • 40 Dambska M, Wisniewski K, Sher J, Solish G. Cerebro-oculo-muscular syndrome: a variant of Fukuyama congenital cerebromuscular dystrophy. Clin Neuropathol 1982; 1 (03) 93-98
  • 41 Korinthenberg R, Palm D, Schlake W, Klein J. Congenital muscular dystrophy, brain malformation and ocular problems (muscle, eye and brain disease) in two German families. Eur J Pediatr 1984; 142 (01) 64-68
  • 42 Walker AE. Lissencephaly. Arch Neurol Psychiatry (Chicago) 1942; 48: 13-29
  • 43 Warburg M. Hydrocephaly, congenital retinal nonattachment, and congenital falciform fold. Am J Ophthalmol 1978; 85 (01) 88-94
  • 44 Dobyns WB, Pagon RA, Armstrong D. , et al. Diagnostic criteria for Walker-Warburg syndrome. Am J Med Genet 1989; 32 (02) 195-210
  • 45 Vajsar J, Schachter H. Walker-Warburg syndrome. Orphanet J Rare Dis 2006; 1: 29
  • 46 Beltrán-Valero de Bernabé D, Currier S, Steinbrecher A. , et al. Mutations in the O-mannosyltransferase gene POMT1 give rise to the severe neuronal migration disorder Walker-Warburg syndrome. Am J Hum Genet 2002; 71 (05) 1033-1043
  • 47 Carss KJ, Stevens E, Foley AR. , et al; UK10K Consortium. Mutations in GDP-mannose pyrophosphorylase B cause congenital and limb-girdle muscular dystrophies associated with hypoglycosylation of α-dystroglycan. Am J Hum Genet 2013; 93 (01) 29-41
  • 48 Magee KR, Shy GM. A new congenital non-progressive myopathy. Brain 1956; 79 (04) 610-621
  • 49 Ravenscroft G, Laing NG, Bönnemann CG. Pathophysiological concepts in the congenital myopathies: blurring the boundaries, sharpening the focus. Brain 2015; 138 (Pt 2): 246-268
  • 50 Shy GM, Engel WK, Somers JE, Wanko T. Nemaline myopathy. A new congenital myopathy. Brain 1963; 86: 793-810
  • 51 Engel AG, Gomez MR. Nemaline (Z disk) myopathy: observations on the origin, structure, and solubility properties of the nemaline structures. J Neuropathol Exp Neurol 1967; 26 (04) 601-619
  • 52 Ryan MM, Ilkovski B, Strickland CD. , et al. Clinical course correlates poorly with muscle pathology in nemaline myopathy. Neurology 2003; 60 (04) 665-673
  • 53 North KN, Wang CH, Clarke N. , et al; International Standard of Care Committee for Congenital Myopathies. Approach to the diagnosis of congenital myopathies. Neuromuscul Disord 2014; 24 (02) 97-116
  • 54 Wallgren-Pettersson C, Beggs AH, Laing NG. 51st ENMC International Workshop: Nemaline Myopathy. 13-15 June 1997, Naarden, The Netherlands. Neuromuscul Disord 1998; 8 (01) 53-56
  • 55 Ryan MM, Schnell C, Strickland CD. , et al. Nemaline myopathy: a clinical study of 143 cases. Ann Neurol 2001; 50 (03) 312-320
  • 56 Lomen-Hoerth C, Simmons ML, Dearmond SJ, Layzer RB. Adult-onset nemaline myopathy: another cause of dropped head. Muscle Nerve 1999; 22 (08) 1146-1150
  • 57 Nowak KJ, Wattanasirichaigoon D, Goebel HH. , et al. Mutations in the skeletal muscle alpha-actin gene in patients with actin myopathy and nemaline myopathy. Nat Genet 1999; 23 (02) 208-212
  • 58 Johnston JJ, Kelley RI, Crawford TO. , et al. A novel nemaline myopathy in the Amish caused by a mutation in troponin T1. Am J Hum Genet 2000; 67 (04) 814-821
  • 59 Ilkovski B, Cooper ST, Nowak K. , et al. Nemaline myopathy caused by mutations in the muscle alpha-skeletal-actin gene. Am J Hum Genet 2001; 68 (06) 1333-1343
  • 60 Gurgel-Giannetti J, Reed U, Bang ML. , et al. Nebulin expression in patients with nemaline myopathy. Neuromuscul Disord 2001; 11 (02) 154-162
  • 61 Donner K, Ollikainen M, Ridanpää M. , et al. Mutations in the beta-tropomyosin (TPM2) gene--a rare cause of nemaline myopathy. Neuromuscul Disord 2002; 12 (02) 151-158
  • 62 Corbett MA, Akkari PA, Domazetovska A. , et al. An alphaTropomyosin mutation alters dimer preference in nemaline myopathy. Ann Neurol 2005; 57 (01) 42-49
  • 63 Agrawal PB, Greenleaf RS, Tomczak KK. , et al. Nemaline myopathy with minicores caused by mutation of the CFL2 gene encoding the skeletal muscle actin-binding protein, cofilin-2. Am J Hum Genet 2007; 80 (01) 162-167
  • 64 Sambuughin N, Yau KS, Olivé M. , et al. Dominant mutations in KBTBD13, a member of the BTB/Kelch family, cause nemaline myopathy with cores. Am J Hum Genet 2010; 87 (06) 842-847
  • 65 Ravenscroft G, Miyatake S, Lehtokari V-L. , et al. Mutations in KLHL40 are a frequent cause of severe autosomal-recessive nemaline myopathy. Am J Hum Genet 2013; 93 (01) 6-18
  • 66 Gupta VA, Ravenscroft G, Shaheen R. , et al. Identification of KLHL41 mutations implicates BTB-Kelch-mediated ubiquitination as an alternate pathway to myofibrillar disruption in nemaline myopathy. Am J Hum Genet 2013; 93 (06) 1108-1117
  • 67 Yuen M, Sandaradura SA, Dowling JJ. , et al. Leiomodin-3 dysfunction results in thin filament disorganization and nemaline myopathy. J Clin Invest 2015; 125 (01) 456-457
  • 68 Agrawal PB, Joshi M, Marinakis NS. , et al. Expanding the phenotype associated with the NEFL mutation: neuromuscular disease in a family with overlapping myopathic and neurogenic findings. JAMA Neurol 2014; 71 (11) 1413-1420
  • 69 Abdulhaq UN, Daana M, Dor T. , et al. Nemaline body myopathy caused by a novel mutation in troponin T1 (TNNT1). Muscle Nerve 2016; 53 (04) 564-569
  • 70 Lehtokari V-L, Pelin K, Sandbacka M. , et al. Identification of 45 novel mutations in the nebulin gene associated with autosomal recessive nemaline myopathy. Hum Mutat 2006; 27 (09) 946-956
  • 71 Dubowitz V, Pearse AG. Oxidative enzymes and phosphorylase in central-core disease of muscle. Lancet 1960; 2 (7140): 23-24
  • 72 Dubowitz V, Roy S. Central core disease of muscle: clinical, histochemical and electron microscopic studies of an affected mother and child. Brain 1970; 93 (01) 133-146
  • 73 Wilmshurst JM, Lillis S, Zhou H. , et al. RYR1 mutations are a common cause of congenital myopathies with central nuclei. Ann Neurol 2010; 68 (05) 717-726
  • 74 Norwood FLM, Harling C, Chinnery PF, Eagle M, Bushby K, Straub V. Prevalence of genetic muscle disease in Northern England: in-depth analysis of a muscle clinic population. Brain 2009; 132 (Pt 11): 3175-3186
  • 75 Shuaib A, Paasuke RT, Brownell KW. Central core disease. Clinical features in 13 patients. Medicine (Baltimore) 1987; 66 (05) 389-396
  • 76 Wu S, Ibarra MCA, Malicdan MCV. , et al. Central core disease is due to RYR1 mutations in more than 90% of patients. Brain 2006; 129 (Pt 6): 1470-1480
  • 77 Fujii J, Otsu K, Zorzato F. , et al. Identification of a mutation in porcine ryanodine receptor associated with malignant hyperthermia. Science 1991; 253 (5018): 448-451
  • 78 Gillard EF, Otsu K, Fujii J. , et al. A substitution of cysteine for arginine 614 in the ryanodine receptor is potentially causative of human malignant hyperthermia. Genomics 1991; 11 (03) 751-755
  • 79 McCarthy TV, Quane KA, Lynch PJ. Ryanodine receptor mutations in malignant hyperthermia and central core disease. Hum Mutat 2000; 15 (05) 410-417
  • 80 Scoto M, Cirak S, Mein R. , et al. SEPN1-related myopathies: clinical course in a large cohort of patients. Neurology 2011; 76 (24) 2073-2078
  • 81 Schara U, Kress W, Bönnemann CG. , et al. The phenotype and long-term follow-up in 11 patients with juvenile selenoprotein N1-related myopathy. Eur J Paediatr Neurol 2008; 12 (03) 224-230
  • 82 Spiro AJ, Shy GM, Gonatas NK. Myotubular myopathy. Persistence of fetal muscle in an adolescent boy. Arch Neurol 1966; 14 (01) 1-14
  • 83 McEntagart M, Parsons G, Buj-Bello A. , et al. Genotype-phenotype correlations in X-linked myotubular myopathy. Neuromuscul Disord 2002; 12 (10) 939-946
  • 84 Herman GE, Finegold M, Zhao W, de Gouyon B, Metzenberg A. Medical complications in long-term survivors with X-linked myotubular myopathy. J Pediatr 1999; 134 (02) 206-214
  • 85 Sutton IJ, Winer JB, Norman AN, Liechti-Gallati S, MacDonald F. Limb girdle and facial weakness in female carriers of X-linked myotubular myopathy mutations. Neurology 2001; 57 (05) 900-902
  • 86 Bitoun M, Maugenre S, Jeannet P-Y. , et al. Mutations in dynamin 2 cause dominant centronuclear myopathy. Nat Genet 2005; 37 (11) 1207-1209
  • 87 Nicot AS, Toussaint A, Tosch V. , et al. Mutations in amphiphysin 2 (BIN1) disrupt interaction with dynamin 2 and cause autosomal recessive centronuclear myopathy. Nat Genet 2007; 39 (09) 1134-1139
  • 88 Ceyhan-Birsoy O, Agrawal PB, Hidalgo C. , et al. Recessive truncating titin gene, TTN, mutations presenting as centronuclear myopathy. Neurology 2013; 81 (14) 1205-1214
  • 89 Jeannet P-Y, Bassez G, Eymard B. , et al. Clinical and histologic findings in autosomal centronuclear myopathy. Neurology 2004; 62 (09) 1484-1490
  • 90 Clarke NF, Kolski H, Dye DE. , et al. Mutations in TPM3 are a common cause of congenital fiber type disproportion. Ann Neurol 2008; 63 (03) 329-337
  • 91 Monnier N, Lunardi J, Marty I. , et al. Absence of beta-tropomyosin is a new cause of Escobar syndrome associated with nemaline myopathy. Neuromuscul Disord 2009; 19 (02) 118-123
  • 92 Clarke NF, Waddell LB, Cooper ST. , et al. Recessive mutations in RYR1 are a common cause of congenital fiber type disproportion. Hum Mutat 2010; 31 (07) E1544-E1550
  • 93 Laing NG, Clarke NF, Dye DE. , et al. Actin mutations are one cause of congenital fibre type disproportion. Ann Neurol 2004; 56 (05) 689-694
  • 94 Tajsharghi H, Thornell LE, Lindberg C, Lindvall B, Henriksson KG, Oldfors A. Myosin storage myopathy associated with a heterozygous missense mutation in MYH7. Ann Neurol 2003; 54 (04) 494-500
  • 95 Walsh R, Rutland C, Thomas R, Loughna S. Cardiomyopathy: a systematic review of disease-causing mutations in myosin heavy chain 7 and their phenotypic manifestations. Cardiology 2010; 115 (01) 49-60
  • 96 Wang CH, Dowling JJ, North K. , et al. Consensus statement on standard of care for congenital myopathies. J Child Neurol 2012; 27 (03) 363-382
  • 97 Azibani F, Bertrand AT. Gene therapy for LMNA-related congenital muscular dystrophy (L-CMD) by trans-splicing. Orphanet J Rare Dis 2015; 10 (Suppl. 02) O11
  • 98 Childers MK, Joubert R, Poulard K. , et al. Gene therapy prolongs survival and restores function in murine and canine models of myotubular myopathy. Sci Transl Med 2014; 6 (220) 220ra10
  • 99 Beggs AH, Böhm J, Snead E. , et al. MTM1 mutation associated with X-linked myotubular myopathy in Labrador Retrievers. Proc Natl Acad Sci U S A 2010; 107 (33) 14697-14702
  • 100 Collins J, Bönnemann CG. Congenital muscular dystrophies: toward molecular therapeutic interventions. Curr Neurol Neurosci Rep 2010; 10 (02) 83-91
  • 101 Jungbluth H, Ochala J, Treves S, Gautel M. Current and future therapeutic approaches to the congenital myopathies. Semin Cell Dev Biol 2017; 64: 191-200
  • 102 Prophylactic use of dantrolene in a patient with central core disease. Available at https://www.ncbi.nlm.nih.gov/pubmed/9539627 . Accessed March 12, 2017
  • 103 Bellinger AM, Reiken S, Dura M. , et al. Remodeling of ryanodine receptor complex causes “leaky” channels: a molecular mechanism for decreased exercise capacity. Proc Natl Acad Sci U S A 2008; 105 (06) 2198-2202
  • 104 Dowling JJ, Arbogast S, Hur J. , et al. Oxidative stress and successful antioxidant treatment in models of RYR1-related myopathy. Brain 2012; 135 (Pt 4): 1115-1127
  • 105 Erb M, Meinen S, Barzaghi P. , et al. Omigapil ameliorates the pathology of muscle dystrophy caused by laminin-α2 deficiency. J Pharmacol Exp Ther 2009; 331 (03) 787-795
  • 106 Yu Q, Sali A, Van der Meulen J. , et al. Omigapil treatment decreases fibrosis and improves respiratory rate in dy(2J) mouse model of congenital muscular dystrophy. PLoS One 2013; 8 (06) e65468
  • 107 Elbaz M, Yanay N, Aga-Mizrachi S. , et al. Losartan, a therapeutic candidate in congenital muscular dystrophy: studies in the dy(2J) /dy(2J) mouse. Ann Neurol 2012; 71 (05) 699-708
  • 108 Girgenrath M, Beermann ML, Vishnudas VK, Homma S, Miller JB. Pathology is alleviated by doxycycline in a laminin-alpha2-null model of congenital muscular dystrophy. Ann Neurol 2009; 65 (01) 47-56
  • 109 Homma S, Beermann ML, Miller JB. Peripheral nerve pathology, including aberrant Schwann cell differentiation, is ameliorated by doxycycline in a laminin-α2-deficient mouse model of congenital muscular dystrophy. Hum Mol Genet 2011; 20 (13) 2662-2672
  • 110 Merlini L, Sabatelli P, Armaroli A. , et al. Cyclosporine A in Ullrich congenital muscular dystrophy: long-term results. Oxid Med Cell Longev 2011; 2011: 139194
  • 111 Foley AR, Donkervoort S, Bönnemann CG. Next-generation sequencing still needs our generation's clinicians. Neurol Genet 2015; 1 (02) e13