Semin Musculoskelet Radiol 2017; 21(04): 459-469
DOI: 10.1055/s-0037-1604007
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Advanced MRI Techniques for Muscle Imaging

Vivek Kalia
1   Department of Radiology and Imaging, Hospital for Special Surgery, New York, New York
,
Doris G. Leung
2   The Center for Genetic Muscle Disorders, Kennedy Krieger Institute, Baltimore, Maryland
,
Darryl B. Sneag
1   Department of Radiology and Imaging, Hospital for Special Surgery, New York, New York
,
Filippo Del Grande
3   Servizio si Radiologia del Sottoceneri, Ospedale Regionale di Lugano, Lugano, Ticino, Switzerland
,
John A. Carrino
1   Department of Radiology and Imaging, Hospital for Special Surgery, New York, New York
› Author Affiliations
Further Information

Publication History

Publication Date:
03 August 2017 (online)

Abstract

Advanced magnetic resonance imaging (MRI) techniques can evaluate a wide array of muscle pathologies including acute or chronic muscle injury, musculotendinous response to injury, intramuscular collections and soft tissue masses, and others. In recent years, MRI has played a more important role in muscle disease diagnosis and monitoring. MRI provides excellent spatial and contrast resolution and helps direct optimal sites for muscle biopsy. Whole-body MRI now helps identify signature patterns of muscular involvement in large anatomical regions with relative ease. Quantitative MRI has advanced the evaluation and disease tracking of muscle atrophy and fatty infiltration in entities such as muscular dystrophies. Multivoxel magnetic resonance spectroscopy (MRS) now allows a more thorough, complete evaluation of a muscle of interest without the inherent sampling bias of single-voxel MRS or biopsy. Diffusion MRI allows quantification of muscle inflammation and capillary perfusion as well as muscle fiber tracking.

Funding Source

Doris G. Leung receives support from a National Institutes of Health grant (5 K23 NS091379–03).


 
  • References

  • 1 Mercuri E, Jungbluth H, Muntoni F. Muscle imaging in clinical practice: diagnostic value of muscle magnetic resonance imaging in inherited neuromuscular disorders. Curr Opin Neurol 2005; 18 (05) 526-537
  • 2 Mercuri E, Pichiecchio A, Allsop J, Messina S, Pane M, Muntoni F. Muscle MRI in inherited neuromuscular disorders: past, present, and future. J Magn Reson Imaging 2007; 25 (02) 433-440
  • 3 Barry JJ, Lansdown DA, Cheung S, Feeley BT, Ma CB. The relationship between tear severity, fatty infiltration, and muscle atrophy in the supraspinatus. J Shoulder Elbow Surg 2013; 22 (01) 18-25
  • 4 Meyer DC, Hoppeler H, von Rechenberg B, Gerber C. A pathomechanical concept explains muscle loss and fatty muscular changes following surgical tendon release. J Orthop Res 2004; 22 (05) 1004-1007
  • 5 Matsumoto F, Uhthoff HK, Trudel G, Loehr JF. Delayed tendon reattachment does not reverse atrophy and fat accumulation of the supraspinatus—an experimental study in rabbits. J Orthop Res 2002; 20 (02) 357-363
  • 6 Fieremans E, Lemberskiy G, Veraart J, Sigmund EE, Gyftopoulos S, Novikov DS. In vivo measurement of membrane permeability and myofiber size in human muscle using time-dependent diffusion tensor imaging and the random permeable barrier model. NMR Biomed 2017 30. (03):
  • 7 Guermazi A, Roemer FW, Robinson P, Tol JL, Regatte RR, Crema MD. Imaging of muscle injuries in sports medicine: sports imaging series. Radiology 2017; 282 (03) 646-663
  • 8 Mueller-Wohlfahrt HW, Haensel L, Mithoefer K. , et al. Terminology and classification of muscle injuries in sport: the Munich consensus statement. Br J Sports Med 2013; 47 (06) 342-350
  • 9 Silder A, Heiderscheit BC, Thelen DG, Enright T, Tuite MJ. MR observations of long-term musculotendon remodeling following a hamstring strain injury. Skeletal Radiol 2008; 37 (12) 1101-1109
  • 10 Reurink G, Goudswaard GJ, Tol JL. , et al. MRI observations at return to play of clinically recovered hamstring injuries. Br J Sports Med 2014; 48 (18) 1370-1376
  • 11 Weckbach S, Michaely HJ, Stemmer A, Schoenberg SO, Dinter DJ. Comparison of a new whole-body continuous-table-movement protocol versus a standard whole-body MR protocol for the assessment of multiple myeloma. Eur Radiol 2010; 20 (12) 2907-2916
  • 12 Guimarães MD, Noschang J, Teixeira SR. , et al. Whole-body MRI in pediatric patients with cancer. Cancer Imaging 2017; 17 (01) 6
  • 13 Cejas CP, Serra MM, Galvez DFG. , et al. Muscle MRI in pediatrics: clinical, pathological and genetic correlation. Pediatr Radiol 2017; 47 (06) 724-735
  • 14 Polavarapu K, Manjunath M, Preethish-Kumar V. , et al. Muscle MRI in Duchenne muscular dystrophy: evidence of a distinctive pattern. Neuromuscul Disord 2016; 26 (11) 768-774
  • 15 Bönnemann CG, Wang CH, Quijano-Roy S. , et al; Members of International Standard of Care Committee for Congenital Muscular Dystrophies. Diagnostic approach to the congenital muscular dystrophies. Neuromuscul Disord 2014; 24 (04) 289-311
  • 16 Schmidt GP, Reiser MF, Baur-Melnyk A. Whole-body imaging of the musculoskeletal system: the value of MR imaging. Skeletal Radiol 2007; 36 (12) 1109-1119
  • 17 Leung DG, Carrino JA, Wagner KR, Jacobs MA. Whole-body magnetic resonance imaging evaluation of facioscapulohumeral muscular dystrophy. Muscle Nerve 2015; 52 (04) 512-520
  • 18 Perez-Lopez R, Mateo J, Mossop H. , et al. Diffusion-weighted imaging as a treatment response biomarker for evaluating bone metastases in prostate cancer: a pilot study. Radiology 2017; 283 (01) 168-177
  • 19 Kono M, Kamishima T, Yasuda S. , et al. Effectiveness of whole-body magnetic resonance imaging for the efficacy of biologic anti-rheumatic drugs in patients with rheumatoid arthritis: A retrospective pilot study. Mod Rheumatol 2017 ; February 1 (Epub ahead of print)
  • 20 Sawicki LM, Grueneisen J, Buchbender C. , et al. Comparative performance of 18F-FDG PET/MRI and 18F-FDG PET/CT in detection and characterization of pulmonary lesions in 121 oncologic patients. J Nucl Med 2016; 57 (04) 582-586
  • 21 Díaz-Manera J, Llauger J, Gallardo E, Illa I. Muscle MRI in muscular dystrophies. Acta Myol 2015; 34 (2–3): 95-108
  • 22 Duijnisveld BJ, Henseler JF, Reijnierse M, Fiocco M, Kan HE, Nelissen RG. Quantitative Dixon MRI sequences to relate muscle atrophy and fatty degeneration with range of motion and muscle force in brachial plexus injury. Magn Reson Imaging 2017; 36: 98-104
  • 23 Hogendoorn S, van Overvest KL, Watt I, Duijsens AH, Nelissen RG. Structural changes in muscle and glenohumeral joint deformity in neonatal brachial plexus palsy. J Bone Joint Surg Am 2010; 92 (04) 935-942
  • 24 Slabaugh MA, Friel NA, Karas V, Romeo AA, Verma NN, Cole BJ. Interobserver and intraobserver reliability of the Goutallier classification using magnetic resonance imaging: proposal of a simplified classification system to increase reliability. Am J Sports Med 2012; 40 (08) 1728-1734
  • 25 Mercuri E, Talim B, Moghadaszadeh B. , et al. Clinical and imaging findings in six cases of congenital muscular dystrophy with rigid spine syndrome linked to chromosome 1p (RSMD1). Neuromuscul Disord 2002; 12 (7–8): 631-638
  • 26 Borsato C, Padoan R, Stramare R, Angelini C. Limb-girdle muscular dystrophies type 2A and 2B: clinical and radiological aspects. Basic Appl Myol 2006; 16: 17-25
  • 27 Fischmann A, Hafner P, Fasler S. , et al. Quantitative MRI can detect subclinical disease progression in muscular dystrophy. J Neurol 2012; 259 (08) 1648-1654
  • 28 Willis TA, Hollingsworth KG, Coombs A. , et al. Quantitative magnetic resonance imaging in limb-girdle muscular dystrophy 2I: a multinational cross-sectional study. PLoS One 2014; 9 (02) e90377
  • 29 Fischer D, Bonati U, Wattjes MP. Recent developments in muscle imaging of neuromuscular disorders. Curr Opin Neurol 2016; 29 (05) 614-620
  • 30 Lee S, Lucas RM, Lansdown DA. , et al. Magnetic resonance rotator cuff fat fraction and its relationship with tendon tear severity and subject characteristics. J Shoulder Elbow Surg 2015; 24 (09) 1442-1451
  • 31 Nardo L, Karampinos DC, Lansdown DA. , et al. Quantitative assessment of fat infiltration in the rotator cuff muscles using water-fat MRI. J Magn Reson Imaging 2014; 39 (05) 1178-1185
  • 32 Wren TA, Bluml S, Tseng-Ong L, Gilsanz V. Three-point technique of fat quantification of muscle tissue as a marker of disease progression in Duchenne muscular dystrophy: preliminary study. AJR Am J Roentgenol 2008; 190 (01) W8-12
  • 33 Wokke BH, Bos C, Reijnierse M. , et al. Comparison of Dixon and T1-weighted MR methods to assess the degree of fat infiltration in Duchenne muscular dystrophy patients. J Magn Reson Imaging 2013; 38 (03) 619-624
  • 34 van den Bergen JC, Wokke BH, Janson AA. , et al. Dystrophin levels and clinical severity in Becker muscular dystrophy patients. J Neurol Neurosurg Psychiatry 2014; 85 (07) 747-753
  • 35 Triplett WT, Baligand C, Forbes SC. , et al. Chemical shift-based MRI to measure fat fractions in dystrophic skeletal muscle. Magn Reson Med 2014; 72 (01) 8-19
  • 36 Paradas C, Llauger J, Diaz-Manera J. , et al. Redefining dysferlinopathy phenotypes based on clinical findings and muscle imaging studies. Neurology 2010; 75 (04) 316-323
  • 37 Dahlqvist JR, Vissing CR, Thomsen C, Vissing J. Severe paraspinal muscle involvement in facioscapulohumeral muscular dystrophy. Neurology 2014; 83 (13) 1178-1183
  • 38 Tasca G, Iannaccone E, Monforte M. , et al. Muscle MRI in Becker muscular dystrophy. Neuromuscul Disord 2012; 22 (Suppl. 02) S100-S106
  • 39 Karampinos DC, Baum T, Nardo L. , et al. Characterization of the regional distribution of skeletal muscle adipose tissue in type 2 diabetes using chemical shift-based water/fat separation. J Magn Reson Imaging 2012; 35 (04) 899-907
  • 40 Williams GN, Buchanan TS, Barrance PJ, Axe MJ, Snyder-Mackler L. Quadriceps weakness, atrophy, and activation failure in predicted noncopers after anterior cruciate ligament injury. Am J Sports Med 2005; 33 (03) 402-407
  • 41 Macleod TD, Snyder-Mackler L, Buchanan TS. Differences in neuromuscular control and quadriceps morphology between potential copers and noncopers following anterior cruciate ligament injury. J Orthop Sports Phys Ther 2014; 44 (02) 76-84
  • 42 Williams GN, Snyder-Mackler L, Barrance PJ, Buchanan TS. Quadriceps femoris muscle morphology and function after ACL injury: a differential response in copers versus non-copers. J Biomech 2005; 38 (04) 685-693
  • 43 Marcon M, Ciritsis B, Laux C. , et al. Quantitative and qualitative MR-imaging assessment of vastus medialis muscle volume loss in asymptomatic patients after anterior cruciate ligament reconstruction. J Magn Reson Imaging 2015; 42 (02) 515-525
  • 44 Marcon M, Ciritsis B, Laux C. , et al. Cross-sectional area measurements versus volumetric assessment of the quadriceps femoris muscle in patients with anterior cruciate ligament reconstructions. Eur Radiol 2015; 25 (02) 290-298
  • 45 Nomura Y, Kuramochi R, Fukubayashi T. Evaluation of hamstring muscle strength and morphology after anterior cruciate ligament reconstruction. Scand J Med Sci Sports 2015; 25 (03) 301-307
  • 46 Snow BJ, Wilcox JJ, Burks RT, Greis PE. Evaluation of muscle size and fatty infiltration with MRI nine to eleven years following hamstring harvest for ACL reconstruction. J Bone Joint Surg Am 2012; 94 (14) 1274-1282
  • 47 Konishi Y, Fukubayashi T. Relationship between muscle volume and muscle torque of the hamstrings after anterior cruciate ligament reconstruction. J Sci Med Sport 2010; 13 (01) 101-105
  • 48 Norte GE, Knaus KR, Kuenze C. , et al. MRI-based assessment of lower extremity muscle volumes in patients before and after ACL reconstruction. J Sport Rehabil 2017 ; March 14 (Epub ahead of print)
  • 49 Edwards RH, Dawson MJ, Wilkie DR, Gordon RE, Shaw D. Clinical use of nuclear magnetic resonance in the investigation of myopathy. Lancet 1982; 1 (8274): 725-731
  • 50 Barbiroli B, Funicello R, Ferlini A, Montagna P, Zaniol P. Muscle energy metabolism in female DMD/BMD carriers: a 31P-MR spectroscopy study. Muscle Nerve 1992; 15 (03) 344-348
  • 51 Kemp GJ, Taylor DJ, Dunn JF, Frostick SP, Radda GK. Cellular energetics of dystrophic muscle. J Neurol Sci 1993; 116 (02) 201-206
  • 52 Banerjee B, Sharma U, Balasubramanian K, Kalaivani M, Kalra V, Jagannathan NR. Effect of creatine monohydrate in improving cellular energetics and muscle strength in ambulatory Duchenne muscular dystrophy patients: a randomized, placebo-controlled 31P MRS study. Magn Reson Imaging 2010; 28 (05) 698-707
  • 53 Kan HE, Klomp DW, Wohlgemuth M. , et al. Only fat infiltrated muscles in resting lower leg of FSHD patients show disturbed energy metabolism. NMR Biomed 2010; 23 (06) 563-568
  • 54 Heier CR, Guerron AD, Korotcov A. , et al. Non-invasive MRI and spectroscopy of mdx mice reveal temporal changes in dystrophic muscle imaging and in energy deficits. PLoS One 2014; 9 (11) e112477
  • 55 Janssen BH, Voet NB, Nabuurs CI. , et al. Distinct disease phases in muscles of facioscapulohumeral dystrophy patients identified by MR detected fat infiltration. PLoS One 2014; 9 (01) e85416
  • 56 Hsieh TJ, Jaw TS, Chuang HY, Jong YJ, Liu GC, Li CW. Muscle metabolism in Duchenne muscular dystrophy assessed by in vivo proton magnetic resonance spectroscopy. J Comput Assist Tomogr 2009; 33 (01) 150-154
  • 57 Willcocks RJ, Forbes SC, Finanger EL. , et al. P.13.5 Magnetic resonance imaging and spectroscopy detect changes with age, corticosteroid treatment, and functional progression in DMD. Neuromuscul Disord 2013; 23 (9–10): 810
  • 58 Kim HK, Serai S, Lindquist D. , et al. Quantitative skeletal muscle MRI: Part 2, MR spectroscopy and T2 relaxation time mapping-comparison between boys with Duchenne muscular dystrophy and healthy boys. AJR Am J Roentgenol 2015; 205 (02) W216–W223
  • 59 Bongers H, Schick F, Skalej M, Jung WI, Stevens A. Localized in vivo 1H spectroscopy of human skeletal muscle: normal and pathologic findings. Magn Reson Imaging 1992; 10 (06) 957-964
  • 60 Boesch C, Décombaz J, Slotboom J, Kreis R. Observation of intramyocellular lipids by means of 1H magnetic resonance spectroscopy. Proc Nutr Soc 1999; 58 (04) 841-850
  • 61 Boesch C, Machann J, Vermathen P, Schick F. Role of proton MR for the study of muscle lipid metabolism. NMR Biomed 2006; 19 (07) 968-988
  • 62 Fischer MA, Nanz D, Shimakawa A. , et al. Quantification of muscle fat in patients with low back pain: comparison of multi-echo MR imaging with single-voxel MR spectroscopy. Radiology 2013; 266 (02) 555-563
  • 63 Reeder SB, Cruite I, Hamilton G, Sirlin CB. Quantitative assessment of liver fat with magnetic resonance imaging and spectroscopy. J Magn Reson Imaging 2011; 34 (04) 729-749
  • 64 Marden FA, Connolly AM, Siegel MJ, Rubin DA. Compositional analysis of muscle in boys with Duchenne muscular dystrophy using MR imaging. Skeletal Radiol 2005; 34 (03) 140-148
  • 65 Forbes SC, Willcocks RJ, Triplett WT. , et al. Magnetic resonance imaging and spectroscopy assessment of lower extremity skeletal muscles in boys with Duchenne muscular dystrophy: a multicenter cross sectional study. PLoS One 2014; 9 (09) e106435
  • 66 Nelson SJ. Multivoxel magnetic resonance spectroscopy of brain tumors. Mol Cancer Ther 2003; 2 (05) 497-507
  • 67 Fayad LM, Barker PB, Jacobs MA. , et al. Characterization of musculoskeletal lesions on 3-T proton MR spectroscopy. AJR Am J Roentgenol 2007; 188 (06) 1513-1520
  • 68 Subhawong TK, Wang X, Machado AJ. , et al. 1H Magnetic resonance spectroscopy findings in idiopathic inflammatory myopathies at 3 T: feasibility and first results. Invest Radiol 2013; 48 (07) 509-516
  • 69 Jacobi B, Bongartz G, Partovi S. , et al. Skeletal muscle BOLD MRI: from underlying physiological concepts to its usefulness in clinical conditions. J Magn Reson Imaging 2012; 35 (06) 1253-1265
  • 70 Carlier PG, Bertoldi D, Baligand C, Wary C, Fromes Y. Muscle blood flow and oxygenation measured by NMR imaging and spectroscopy. NMR Biomed 2006; 19 (07) 954-967
  • 71 Li D, Dhawale P, Rubin PJ, Haacke EM, Gropler RJ. Myocardial signal response to dipyridamole and dobutamine: demonstration of the BOLD effect using a double-echo gradient-echo sequence. Magn Reson Med 1996; 36 (01) 16-20
  • 72 Donahue KM, Van Kylen J, Guven S. , et al. Simultaneous gradient-echo/spin-echo EPI of graded ischemia in human skeletal muscle. J Magn Reson Imaging 1998; 8 (05) 1106-1113
  • 73 Wigmore DM, Damon BM, Pober DM, Kent-Braun JA. MRI measures of perfusion-related changes in human skeletal muscle during progressive contractions. J Appl Physiol (1985) 2004; 97 (06) 2385-2394
  • 74 Johnston JH, Kim HK, Merrow AC. , et al. Quantitative skeletal muscle MRI: Part 1, Derived T2 fat map in differentiation between boys with Duchenne muscular dystrophy and healthy boys. AJR Am J Roentgenol 2015; 205 (02) W207-W215
  • 75 O'Dell MW, Villanueva M, Creelman C. , et al. Detection of botulinum toxin muscle effect in humans using magnetic resonance imaging: a qualitative case series. PM R 2017; pii: S1934-1482 (17):30551–30558
  • 76 Shellock FG, Fleckenstein JL. Muscle physiology and pathophysiology: magnetic resonance imaging evaluation. Semin Musculoskelet Radiol 2000; 4 (04) 459-479
  • 77 Kinugasa R, Kawakami Y, Fukunaga T. Mapping activation levels of skeletal muscle in healthy volunteers: an MRI study. J Magn Reson Imaging 2006; 24 (06) 1420-1425
  • 78 Maillard SM, Jones R, Owens C. , et al. Quantitative assessment of MRI T2 relaxation time of thigh muscles in juvenile dermatomyositis. Rheumatology (Oxford) 2004; 43 (05) 603-608
  • 79 Kim HK, Laor T, Horn PS, Racadio JM, Wong B, Dardzinski BJ. T2 mapping in Duchenne muscular dystrophy: distribution of disease activity and correlation with clinical assessments. Radiology 2010; 255 (03) 899-908
  • 80 Arpan I, Forbes SC, Lott DJ. , et al. T2 mapping provides multiple approaches for the characterization of muscle involvement in neuromuscular diseases: a cross-sectional study of lower leg muscles in 5-15-year-old boys with Duchenne muscular dystrophy. NMR Biomed 2013; 26 (03) 320-328
  • 81 Shiraj S, Kim HK, Anton C, Horn PS, Laor T. Spatial variation of T2 relaxation times of patellar cartilage and physeal patency: an in vivo study in children and young adults. AJR Am J Roentgenol 2014; 202 (03) W292-7
  • 82 Damon BM, Ding Z, Anderson AW, Freyer AS, Gore JC. Validation of diffusion tensor MRI-based muscle fiber tracking. Magn Reson Med 2002; 48 (01) 97-104
  • 83 Galbán CJ, Maderwald S, Uffmann K, de Greiff A, Ladd ME. Diffusive sensitivity to muscle architecture: a magnetic resonance diffusion tensor imaging study of the human calf. Eur J Appl Physiol 2004; 93 (03) 253-262
  • 84 Sinha S, Hodgson JA, Finni T, Lai AM, Grinstead J, Edgerton VR. Muscle kinematics during isometric contraction: development of phase contrast and spin tag techniques to study healthy and atrophied muscles. J Magn Reson Imaging 2004; 20 (06) 1008-1019
  • 85 Steidle G, Schick F. Echoplanar diffusion tensor imaging of the lower leg musculature using eddy current nulled stimulated echo preparation. Magn Reson Med 2006; 55 (03) 541-548
  • 86 Baete SH, Cho GY, Sigmund EE. Dynamic diffusion-tensor measurements in muscle tissue using the single-line multiple-echo diffusion-tensor acquisition technique at 3T. NMR Biomed 2015; 28 (06) 667-678
  • 87 Novikov DS, Jensen JH, Helpern JA, Fieremans E. Revealing mesoscopic structural universality with diffusion. Proc Natl Acad Sci U S A 2014; 111 (14) 5088-5093
  • 88 Qi J, Olsen NJ, Price RR, Winston JA, Park JH. Diffusion-weighted imaging of inflammatory myopathies: polymyositis and dermatomyositis. J Magn Reson Imaging 2008; 27 (01) 212-217
  • 89 Zaraiskaya T, Kumbhare D, Noseworthy MD. Diffusion tensor imaging in evaluation of human skeletal muscle injury. J Magn Reson Imaging 2006; 24 (02) 402-408
  • 90 Cermak NM, Noseworthy MD, Bourgeois JM, Tarnopolsky MA, Gibala MJ. Diffusion tensor MRI to assess skeletal muscle disruption following eccentric exercise. Muscle Nerve 2012; 46 (01) 42-50
  • 91 Froeling M, Oudeman J, Strijkers GJ. , et al. Muscle changes detected with diffusion-tensor imaging after long-distance running. Radiology 2015; 274 (02) 548-562
  • 92 Heemskerk AM, Drost MR, van Bochove GS, van Oosterhout MFM, Nicolay K, Strijkers GJ. DTI-based assessment of ischemia-reperfusion in mouse skeletal muscle. Magn Reson Med 2006; 56 (02) 272-281
  • 93 Lundberg TR, Fernandez-Gonzalo R, Gustafsson T, Tesch PA. Aerobic exercise does not compromise muscle hypertrophy response to short-term resistance training. J Appl Physiol (1985) 2013; 114 (01) 81-89
  • 94 Harber MP, Konopka AR, Undem MK. , et al. Aerobic exercise training induces skeletal muscle hypertrophy and age-dependent adaptations in myofiber function in young and older men. J Appl Physiol (1985) 2012; 113 (09) 1495-1504
  • 95 Häkkinen K, Pakarinen A, Kraemer WJ, Häkkinen A, Valkeinen H, Alen M. Selective muscle hypertrophy, changes in EMG and force, and serum hormones during strength training in older women. J Appl Physiol (1985) 2001; 91 (02) 569-580
  • 96 Kim S, Chi-Fishman G, Barnett AS, Pierpaoli C. Dependence on diffusion time of apparent diffusion tensor of ex vivo calf tongue and heart. Magn Reson Med 2005; 54 (06) 1387-1396
  • 97 Sigmund EE, Sui D, Ukpebor O. , et al. Stimulated echo diffusion tensor imaging and SPAIR T2 -weighted imaging in chronic exertional compartment syndrome of the lower leg muscles. J Magn Reson Imaging 2013; 38 (05) 1073-1082
  • 98 Mohler LR, Styf JR, Pedowitz RA, Hargens AR, Gershuni DH. Intramuscular deoxygenation during exercise in patients who have chronic anterior compartment syndrome of the leg. J Bone Joint Surg Am 1997; 79 (06) 844-849
  • 99 Agten CA, Buck FM, Dyer L, Flück M, Pfirrmann CW, Rosskopf AB. Delayed-onset muscle soreness: temporal assessment with quantitative MRI and shear-wave ultrasound elastography. AJR Am J Roentgenol 2017; 208 (02) 402-412
  • 100 Papazoglou S, Rump J, Braun J, Sack I. Shear wave group velocity inversion in MR elastography of human skeletal muscle. Magn Reson Med 2006; 56 (03) 489-497
  • 101 Basford JR, Jenkyn TR, An KN, Ehman RL, Heers G, Kaufman KR. Evaluation of healthy and diseased muscle with magnetic resonance elastography. Arch Phys Med Rehabil 2002; 83 (11) 1530-1536