Journal of Pediatric Neurology 2017; 15(06): 316-324
DOI: 10.1055/s-0037-1603349
Original Article
Georg Thieme Verlag KG Stuttgart · New York

Phenotypic Variability and mTOR Pathway Gene Aberrations in Familial Tuberous Sclerosis

Winnie S. Liang
1   Neurogenomics Division, Translational Genomics Research Institute, Phoenix, Arizona, United States
,
Shobana Sekar
1   Neurogenomics Division, Translational Genomics Research Institute, Phoenix, Arizona, United States
,
Sara Nasser
1   Neurogenomics Division, Translational Genomics Research Institute, Phoenix, Arizona, United States
,
Jonathan Adkins
1   Neurogenomics Division, Translational Genomics Research Institute, Phoenix, Arizona, United States
,
Lori Cuyugan
1   Neurogenomics Division, Translational Genomics Research Institute, Phoenix, Arizona, United States
,
Daniel Enriquez
1   Neurogenomics Division, Translational Genomics Research Institute, Phoenix, Arizona, United States
,
Sampath Rangasamy
1   Neurogenomics Division, Translational Genomics Research Institute, Phoenix, Arizona, United States
,
Vinodh Narayanan
1   Neurogenomics Division, Translational Genomics Research Institute, Phoenix, Arizona, United States
› Author Affiliations
Further Information

Publication History

03 January 2017

16 April 2017

Publication Date:
22 May 2017 (online)

Abstract

Tuberous sclerosis complex (TSC) is an autosomal dominant disorder that demonstrates variable severity, such that affected family members may have mild or severe disease. We performed exome and RNA sequencing of blood leukocytes from mild and severe cases across four families to identify mTOR pathway aberrations that may underlie phenotypic variability. In each family, we identified TSC1/TSC2 aberrations along with different mTOR pathway gene alterations, including base substitutions, deletions, and skewed allelic frequencies. Here, we describe the first reported DNA and RNA analysis of TSC families demonstrating mTOR pathway aberrations in mild and severe forms of the disease.

Supplementary Material

 
  • References

  • 1 European Chromosome 16 Tuberous Sclerosis Consortium. Identification and characterization of the tuberous sclerosis gene on chromosome 16. Cell 1993; 75 (07) 1305-1315
  • 2 Cheadle JP, Reeve MP, Sampson JR, Kwiatkowski DJ. Molecular genetic advances in tuberous sclerosis. Hum Genet 2000; 107 (02) 97-114
  • 3 van Slegtenhorst M, de Hoogt R, Hermans C. , et al. Identification of the tuberous sclerosis gene TSC1 on chromosome 9q34. Science 1997; 277 (5327): 805-808
  • 4 Crino PB. The pathophysiology of tuberous sclerosis complex. Epilepsia 2010; 51 (Suppl. 01) 27-29
  • 5 Northrup H, Wheless JW, Bertin TK, Lewis RA. Variability of expression in tuberous sclerosis. J Med Genet 1993; 30 (01) 41-43
  • 6 Rok P, Kasprzyk-Obara J, Domańska-Pakieła D, Jóźwiak S. Clinical symptoms of tuberous sclerosis complex in patients with an identical TSC2 mutation. Med Sci Monit 2005; 11 (05) CR230-CR234
  • 7 Jones AC, Shyamsundar MM, Thomas MW. , et al. Comprehensive mutation analysis of TSC1 and TSC2-and phenotypic correlations in 150 families with tuberous sclerosis. Am J Hum Genet 1999; 64 (05) 1305-1315
  • 8 Sancak O, Nellist M, Goedbloed M. , et al. Mutational analysis of the TSC1 and TSC2 genes in a diagnostic setting: genotype--phenotype correlations and comparison of diagnostic DNA techniques in Tuberous Sclerosis Complex. Eur J Hum Genet 2005; 13 (06) 731-741
  • 9 van Slegtenhorst M, Verhoef S, Tempelaars A. , et al. Mutational spectrum of the TSC1 gene in a cohort of 225 tuberous sclerosis complex patients: no evidence for genotype-phenotype correlation. J Med Genet 1999; 36 (04) 285-289
  • 10 Crino PB. Evolving neurobiology of tuberous sclerosis complex. Acta Neuropathol 2013; 125 (03) 317-332
  • 11 de Vries PJ, Howe CJ. The tuberous sclerosis complex proteins--a GRIPP on cognition and neurodevelopment. Trends Mol Med 2007; 13 (08) 319-326
  • 12 Ehninger D, de Vries PJ, Silva AJ. From mTOR to cognition: molecular and cellular mechanisms of cognitive impairments in tuberous sclerosis. J Intellect Disabil Res 2009; 53 (10) 838-851
  • 13 Han S, Santos TM, Puga A. , et al. Phosphorylation of tuberin as a novel mechanism for somatic inactivation of the tuberous sclerosis complex proteins in brain lesions. Cancer Res 2004; 64 (03) 812-816
  • 14 Ma L, Teruya-Feldstein J, Bonner P. , et al. Identification of S664 TSC2 phosphorylation as a marker for extracellular signal-regulated kinase mediated mTOR activation in tuberous sclerosis and human cancer. Cancer Res 2007; 67 (15) 7106-7112
  • 15 Qin W, Chan JA, Vinters HV. , et al. Analysis of TSC cortical tubers by deep sequencing of TSC1, TSC2 and KRAS demonstrates that small second-hit mutations in these genes are rare events. Brain Pathol 2010; 20 (06) 1096-1105
  • 16 Caban C, Khan N, Hasbani DM, Crino PB. Genetics of tuberous sclerosis complex: implications for clinical practice. Appl Clin Genet 2016; 10: 1-8
  • 17 Jancic J, Duric V, Ivancevic N, Nikolic B, van den Anker JN, Samardzic J. Current Use of mTOR inhibitors for the treatment of subependymal giant cell astrocytomas and epilepsy in patients with TSC. Curr Med Chem 2016; 23 (37) 4260-4269
  • 18 Humphrey A, Ploubidis GB, Yates JR, Steinberg T, Bolton PF. The Early Childhood Epilepsy Severity Scale (E-Chess). Epilepsy Res 2008; 79 (2-3): 139-145
  • 19 Speechley KN, Sang X, Levin S. , et al. Assessing severity of epilepsy in children: preliminary evidence of validity and reliability of a single-item scale. Epilepsy Behav 2008; 13 (02) 337-342
  • 20 Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009; 25 (14) 1754-1760
  • 21 Hoogeveen-Westerveld M, Exalto C, Maat-Kievit A, van den Ouweland A, Halley D, Nellist M. Analysis of TSC1 truncations defines regions involved in TSC1 stability, aggregation and interaction. Biochim Biophys Acta 2010; 1802 (09) 774-781
  • 22 Schwarz JM, Cooper DN, Schuelke M, Seelow D. MutationTaster2: mutation prediction for the deep-sequencing age. Nat Methods 2014; 11 (04) 361-362
  • 23 Shihab HA, Gough J, Cooper DN. , et al. Predicting the functional, molecular, and phenotypic consequences of amino acid substitutions using hidden Markov models. Hum Mutat 2013; 34 (01) 57-65
  • 24 Hymowitz SG, Patel DR, Wallweber HJ. , et al. Structures of APRIL-receptor complexes: like BCMA, TACI employs only a single cysteine-rich domain for high affinity ligand binding. J Biol Chem 2005; 280 (08) 7218-7227
  • 25 Kim JS, Ro SH, Kim M. , et al. Sestrin2 inhibits mTORC1 through modulation of GATOR complexes. Sci Rep 2015; 5: 9502 . Doi: 10.1038/srep09502
  • 26 Parmigiani A, Nourbakhsh A, Ding B. , et al. Sestrins inhibit mTORC1 kinase activation through the GATOR complex. Cell Reports 2014; 9 (04) 1281-1291
  • 27 Dokudovskaya S, Rout MP. SEA you later alli-GATOR--a dynamic regulator of the TORC1 stress response pathway. J Cell Sci 2015; 128 (12) 2219-2228
  • 28 Gan X, Wang J, Wang C. , et al. PRR5L degradation promotes mTORC2-mediated PKC-δ phosphorylation and cell migration downstream of Gα12. Nat Cell Biol 2012; 14 (07) 686-696
  • 29 Adzhubei I, Jordan DM, Sunyaev SR. Predicting functional effect of human missense mutations using PolyPhen-2. Curr Protoc Hum Genet 2013; Chapter 7: 20 . Doi: 10.1002/0471142905.hg0720s76
  • 30 Kim DH, Sarbassov DD, Ali SM. , et al. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 2002; 110 (02) 163-175
  • 31 Chan JA, Zhang H, Roberts PS. , et al. Pathogenesis of tuberous sclerosis subependymal giant cell astrocytomas: biallelic inactivation of TSC1 or TSC2 leads to mTOR activation. J Neuropathol Exp Neurol 2004; 63 (12) 1236-1242
  • 32 Henske EP, Scheithauer BW, Short MP. , et al. Allelic loss is frequent in tuberous sclerosis kidney lesions but rare in brain lesions. Am J Hum Genet 1996; 59 (02) 400-406
  • 33 Tyburczy ME, Wang JA, Li S. , et al. Sun exposure causes somatic second-hit mutations and angiofibroma development in tuberous sclerosis complex. Hum Mol Genet 2014; 23 (08) 2023-2029
  • 34 Jambaqué I, Cusmai R, Curatolo P, Cortesi F, Perrot C, Dulac O. Neuropsychological aspects of tuberous sclerosis in relation to epilepsy and MRI findings. Dev Med Child Neurol 1991; 33 (08) 698-705
  • 35 Shepherd CW, Houser OW, Gomez MR. MR findings in tuberous sclerosis complex and correlation with seizure development and mental impairment. Am J Neuroradiol 1995; 16 (01) 149-155
  • 36 Giannantoni NM, Restuccia D, Della Marca G, Alfano RM, Vollono C. A novel TSC2 mutation causing tuberless tuberous sclerosis. Seizure 2014; 23 (07) 580-582
  • 37 Kaufmann R, Kornreich L, Goldberg-Stern H. Unusual clinical presentation of tuberless tuberous sclerosis complex. J Child Neurol 2009; 24 (03) 361-364
  • 38 Joinson C, O'Callaghan FJ, Osborne JP, Martyn C, Harris T, Bolton PF. Learning disability and epilepsy in an epidemiological sample of individuals with tuberous sclerosis complex. Psychol Med 2003; 33 (02) 335-344
  • 39 Jones AC, Daniells CE, Snell RG. , et al. Molecular genetic and phenotypic analysis reveals differences between TSC1 and TSC2 associated familial and sporadic tuberous sclerosis. Hum Mol Genet 1997; 6 (12) 2155-2161
  • 40 Lewis JC, Thomas HV, Murphy KC, Sampson JR. Genotype and psychological phenotype in tuberous sclerosis. J Med Genet 2004; 41 (03) 203-207
  • 41 Jansen AC, Sancak O, D'Agostino MD. , et al. Unusually mild tuberous sclerosis phenotype is associated with TSC2 R905Q mutation. Ann Neurol 2006; 60 (05) 528-539
  • 42 Lyczkowski DA, Conant KD, Pulsifer MB. , et al. Intrafamilial phenotypic variability in tuberous sclerosis complex. J Child Neurol 2007; 22 (12) 1348-1355
  • 43 Smalley SL, Burger F, Smith M. Phenotypic variation of tuberous sclerosis in a single extended kindred. J Med Genet 1994; 31 (10) 761-765
  • 44 Au KS, Ward CH, Northrup H. Tuberous sclerosis complex: disease modifiers and treatments. Curr Opin Pediatr 2008; 20 (06) 628-633
  • 45 Humphrey A, Higgins JN, Yates JR, Bolton PF. Monozygotic twins with tuberous sclerosis discordant for the severity of developmental deficits. Neurology 2004; 62 (05) 795-798
  • 46 Kwiatkowska J, Wigowska-Sowinska J, Napierala D, Slomski R, Kwiatkowski DJ. Mosaicism in tuberous sclerosis as a potential cause of the failure of molecular diagnosis. N Engl J Med 1999; 340 (09) 703-707
  • 47 Kwiatkowski D. TSC1, TSC2, TSC3? Or mosaicism?. Eur J Hum Genet 2005; 13 (06) 695-696
  • 48 Jentarra GM, Rice SG, Olfers S, Saffen D, Narayanan V. Evidence for population variation in TSC1 and TSC2 gene expression. BMC Med Genet 2011; 12: 29 . Doi: 10.1186/1471-2350-12-29
  • 49 Rauen KA. The RASopathies. Annu Rev Genomics Hum Genet 2013; 14: 355-369