Journal of Pediatric Neurology 2017; 15(03): 099-104
DOI: 10.1055/s-0037-1602815
Review Article
Georg Thieme Verlag KG Stuttgart · New York

Epigenetic Understanding of Gene-Environment Interaction in Autism Spectrum Disorder

Takeo Kubota
1   Department of Child Studies, Faculty of Child Studies, Seitoku University, Japan
› Author Affiliations
Further Information

Publication History

21 December 2016

13 February 2017

Publication Date:
04 May 2017 (online)

Abstract

The number of children with autism spectrum disorder (ASD) has increased in many countries over the past 10 years. Genetic studies have revealed that ASD is caused by mutations in the genes coding proteins related to neuronal function. However, such genetic abnormalities cannot underlie the increase in this disorder since mutations do not accumulate among children in the short-term. Epigenetics is a mechanism that is involved in gene regulation not by changing DNA sequence (mutations) but by changing the chemical modifications of DNA and histone proteins. Current studies suggest that mental stress and other forms of environmental stress in early life alter the epigenetic status of genes and change the neuronal gene function, resulting in persistent behavioral abnormalities. Therefore, it can be speculated that the current increase in the prevalence of ASD is partially caused by epigenetic changes in the brains of children induced by some recent socio-environmental conditions. However, epigenetic changes are reversible. Indeed, it has been demonstrated that some drugs for mental disorders reverse the altered epigenetic state and recover the expression of neuronal genes. It has also been demonstrated that offering an appropriate nurturing environment in early life reverses the altered epigenetic state and recovers the neurological gene function in mouse models of ASD. Therefore, from the epigenetic point of view, early medical and educational interventions may be important for children with ASD.

 
  • References

  • 1 Kanner L. Autistic disturbances of affective contact. Acta Paedopsychiatr 1968; 35 (04) 100-136
  • 2 Diagnostic and Statistical Manual of Mental Disorders. 5th ed. Arlington: American Psychiatric Association; 2013
  • 3 Maenner MJ, Rice CE, Arneson CL. , et al. Potential impact of DSM-5 criteria on autism spectrum disorder prevalence estimates. JAMA Psychiatry 2014; 71 (03) 292-300
  • 4 Basic investigation report for handicapped children 2005 (in Japanese). Available at: http://www.mhlw.go.jp/toukei/saikin/hw/titeki/index.html . Accessed December 21, 2016
  • 5 Yeargin-Allsopp M, Rice C, Karapurkar T, Doernberg N, Boyle C, Murphy C. Prevalence of autism in a US metropolitan area. JAMA 2003; 289 (01) 49-55
  • 6 Holoden C. Autism Now. Science 2009; 323 (5914): 565 . Doi: 10.1126/science.323.5914.565c
  • 7 Fombonne E. Epidemiology of pervasive developmental disorders. Pediatr Res 2009; 65 (06) 591-598
  • 8 Nevison CD. A comparison of temporal trends in United States autism prevalence to trends in suspected environmental factors. Environ Health 2014; 13: 73 . Doi: 10.1186/1476-069X-13-73
  • 9 Kim YS, Leventhal BL, Koh YJ. , et al. Prevalence of autism spectrum disorders in a total population sample. Am J Psychiatry 2011; 168 (09) 904-912
  • 10 Christensen DL, Baio J, Van Naarden Braun K. , et al; Centers for Disease Control and Prevention (CDC). Prevalence and characteristics of autism spectrum disorder among children aged 8 Years--autism and developmental disabilities monitoring network, 11 sites, United States, 2012. MMWR Surveill Summ 2016; 65 (03) 1-23
  • 11 Lord C. Epidemiology: How common is autism?. Nature 2011; 474 (7350): 166-168
  • 12 Zoghbi HY. Postnatal neurodevelopmental disorders: meeting at the synapse?. Science 2003; 302 (5646): 826-830
  • 13 Persico AM, Bourgeron T. Searching for ways out of the autism maze: genetic, epigenetic and environmental clues. Trends Neurosci 2006; 29 (07) 349-358
  • 14 Hoekstra RA, Bartels M, Hudziak JJ, Van Beijsterveldt TC, Boomsma DI. Genetic and environmental covariation between autistic traits and behavioral problems. Twin Res Hum Genet 2007; 10 (06) 853-860
  • 15 Hallmayer J, Cleveland S, Torres A. , et al. Genetic heritability and shared environmental factors among twin pairs with autism. Arch Gen Psychiatry 2011; 68 (11) 1095-1102
  • 16 Qiu J. Epigenetics: unfinished symphony. Nature 2006; 441 (7090): 143-145
  • 17 Miyake K, Yang C, Minakuchi Y. , et al. Comparison of genomic and epigenomic expression in monozygotic twins discordant for Rett syndrome. PLoS One 2013; 8 (06) e66729 . Doi: 10.1371/journal.pone.0066729
  • 18 Corradi A, Fadda M, Piton A. , et al. SYN2 is an autism predisposing gene: loss-of-function mutations alter synaptic vesicle cycling and axon outgrowth. Hum Mol Genet 2014; 23 (01) 90-103
  • 19 Hamilton PJ, Campbell NG, Sharma S. , et al; NIH ARRA Autism Sequencing Consortium. De novo mutation in the dopamine transporter gene associates dopamine dysfunction with autism spectrum disorder. Mol Psychiatry 2013; 18 (12) 1315-1323
  • 20 Hill-Yardin EL, Argyropoulos A, Hosie S. , et al. Reduced susceptibility to induced seizures in the Neuroligin-3(R451C) mouse model of autism. Neurosci Lett 2015; 589: 57-61
  • 21 Sala C, Vicidomini C, Bigi I, Mossa A, Verpelli C. Shank synaptic scaffold proteins: keys to understanding the pathogenesis of autism and other synaptic disorders. J Neurochem 2015; 135 (05) 849-858
  • 22 Leblond CS, Nava C, Polge A. , et al. Meta-analysis of SHANK mutations in autism spectrum disorders: a gradient of severity in cognitive impairments. PLoS Genet 2014; 10 (09) e1004580 . Doi: 10.1371/journal.pgen.1004580
  • 23 Mizuno M, Matsumoto A, Hamada N. , et al. Role of an adaptor protein Lin-7B in brain development: possible involvement in autism spectrum disorders. J Neurochem 2015; 132 (01) 61-69
  • 24 Persico AM, Napolioni V. Autism genetics. Behav Brain Res 2013; 251: 95-112
  • 25 Inoue K, Kanai M, Tanabe Y. , et al. Prenatal interphase FISH diagnosis of PLP1 duplication associated with Pelizaeus-Merzbacher disease. Prenat Diagn 2001; 21 (13) 1133-1136
  • 26 Reiner O, Carrozzo R, Shen Y. , et al. Isolation of a Miller-Dieker lissencephaly gene containing G protein beta-subunit-like repeats. Nature 1993; 364 (6439): 717-721
  • 27 Bi W, Sapir T, Shchelochkov OA. , et al. Increased LIS1 expression affects human and mouse brain development. Nat Genet 2009; 41 (02) 168-177
  • 28 Online Mendelian Inheritance in Man (OMIM). #118220. Available at: http://www ncbi nlm nih gov/entrez/ . Accessed August 21, 2016
  • 29 Obi T, Nishioka K, Ross OA. , et al. Clinicopathologic study of a SNCA gene duplication patient with Parkinson disease and dementia. Neurology 2008; 70 (03) 238-241
  • 30 Nakai N, Otsuka S, Myung J, Takumi T. Autism spectrum disorder model mice: Focus on copy number variation and epigenetics. Sci China Life Sci 2015; 58 (10) 976-984
  • 31 Tran PL, Lehti V, Lampi KM. , et al. Smoking during pregnancy and risk of autism spectrum disorder in a Finnish National Birth Cohort. Paediatr Perinat Epidemiol 2013; 27 (03) 266-274
  • 32 Kalkbrenner AE, Windham GC, Serre ML. , et al. Particulate matter exposure, prenatal and postnatal windows of susceptibility, and autism spectrum disorders. Epidemiology 2015; 26 (01) 30-42
  • 33 Kardas F, Bayram AK, Demirci E. , et al. Increased serum phthalates (MEHP, DEHP) and bisphenol A concentrations in children with autism spectrum disorder: the role of endocrine disruptors in autism etiopathogenesis. J Child Neurol 2016; 31 (05) 629-635
  • 34 Sakamoto A, Moriuchi H, Matsuzaki J, Motoyama K, Moriuchi M. Retrospective diagnosis of congenital cytomegalovirus infection in children with autism spectrum disorder but no other major neurologic deficit. Brain Dev 2015; 37 (02) 200-205
  • 35 Ornoy A, Weinstein-Fudim L, Ergaz Z. Prenatal factors associated with autism spectrum disorder (ASD). Reprod Toxicol 2015; 56: 155-169
  • 36 Roberts AL, Lyall K, Rich-Edwards JW, Ascherio A, Weisskopf MG. Association of maternal exposure to childhood abuse with elevated risk for autism in offspring. JAMA Psychiatry 2013; 70 (05) 508-515
  • 37 Belluscio LM, Berardino BG, Ferroni NM, Ceruti JM, Cánepa ET. Early protein malnutrition negatively impacts physical growth and neurological reflexes and evokes anxiety and depressive-like behaviors. Physiol Behav 2014; 129: 237-254
  • 38 Fujiwara T, Morisaki N, Honda Y, Sampei M, Tani Y. Chemicals, Nutrition, and Autism Spectrum Disorder: A Mini-Review. Front Neurosci 2016; 10: 174 . Doi: 10.3389/fnins.2016.00174
  • 39 International Human Genome Sequencing Consortium. Finishing the euchromatic sequence of the human genome. Nature 2004; 431 (7011): 931-945
  • 40 Takizawa T, Nakashima K, Namihira M. , et al. DNA methylation is a critical cell-intrinsic determinant of astrocyte differentiation in the fetal brain. Dev Cell 2001; 1 (06) 749-758
  • 41 De Rubeis S, He X, Goldberg AP. , et al; DDD Study; Homozygosity Mapping Collaborative for Autism; UK10K Consortium. Synaptic, transcriptional and chromatin genes disrupted in autism. Nature 2014; 515 (7526): 209-215
  • 42 Amir RE, Van den Veyver IB, Wan M, Tran CQ, Francke U, Zoghbi HY. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet 1999; 23 (02) 185-188
  • 43 Tatton-Brown K, Seal S, Ruark E. , et al; Childhood Overgrowth Consortium. Mutations in the DNA methyltransferase gene DNMT3A cause an overgrowth syndrome with intellectual disability. Nat Genet 2014; 46 (04) 385-388
  • 44 Kleefstra T, Brunner HG, Amiel J. , et al. Loss-of-function mutations in euchromatin histone methyl transferase 1 (EHMT1) cause the 9q34 subtelomeric deletion syndrome. Am J Hum Genet 2006; 79 (02) 370-377
  • 45 Balan S, Iwayama Y, Maekawa M. , et al. Exon resequencing of H3K9 methyltransferase complex genes, EHMT1, EHTM2 and WIZ, in Japanese autism subjects. Mol Autism 2014; 5 (01) 49 . Doi: 10.1186/2040-2392-5-49
  • 46 Barnard RA, Pomaville MB, O'Roak BJ. Mutations and modeling of the chromatin remodeler CHD8 define an emerging autism etiology. Front Neurosci 2015; 9: 477 . Doi: 10.3389/fnins.2015.00477
  • 47 Zhu L, Wang X, Li XL. , et al. Epigenetic dysregulation of SHANK3 in brain tissues from individuals with autism spectrum disorders. Hum Mol Genet 2014; 23 (06) 1563-1578
  • 48 Choi SY, Pang K, Kim JY. , et al. Post-transcriptional regulation of SHANK3 expression by microRNAs related to multiple neuropsychiatric disorders. Mol Brain 2015; 8 (01) 74 . Doi: 10.1186/s13041-015-0165-3
  • 49 Kubota T, Wakui K, Nakamura T. , et al. The proportion of cells with functional X disomy is associated with the severity of mental retardation in mosaic ring X Turner syndrome females. Cytogenet Genome Res 2002; 99 (1-4): 276-284
  • 50 Kubota T, Das S, Christian SL, Baylin SB, Herman JG, Ledbetter DH. Methylation-specific PCR simplifies imprinting analysis. Nat Genet 1997; 16 (01) 16-17
  • 51 Lillycrop KA, Phillips ES, Jackson AA, Hanson MA, Burdge GC. Dietary protein restriction of pregnant rats induces and folic acid supplementation prevents epigenetic modification of hepatic gene expression in the offspring. J Nutr 2005; 135 (06) 1382-1386
  • 52 Lillycrop KA, Phillips ES, Torrens C, Hanson MA, Jackson AA, Burdge GC. Feeding pregnant rats a protein-restricted diet persistently alters the methylation of specific cytosines in the hepatic PPAR alpha promoter of the offspring. Br J Nutr 2008; 100 (02) 278-282
  • 53 Tobi EW, Lumey LH, Talens RP. , et al. DNA methylation differences after exposure to prenatal famine are common and timing- and sex-specific. Hum Mol Genet 2009; 18 (21) 4046-4053
  • 54 Ivorra C, Fraga MF, Bayón GF. , et al. DNA methylation patterns in newborns exposed to tobacco in utero. J Transl Med 2015; 13: 25 . Doi: 10.1186/s12967-015-0384-5
  • 55 Küpers LK, Xu X, Jankipersadsing SA. , et al. DNA methylation mediates the effect of maternal smoking during pregnancy on birthweight of the offspring. Int J Epidemiol 2015; 44 (04) 1224-1237
  • 56 Zhang CR, Ho MF, Vega MC, Burne TH, Chong S. Prenatal ethanol exposure alters adult hippocampal VGLUT2 expression with concomitant changes in promoter DNA methylation, H3K4 trimethylation and miR-467b-5p levels. Epigenetics Chromatin 2015; 8: 40 . Doi: 10.1186/s13072-015-0032-6
  • 57 Subbanna S, Nagre NN, Umapathy NS, Pace BS, Basavarajappa BS. Ethanol exposure induces neonatal neurodegeneration by enhancing CB1R Exon1 histone H4K8 acetylation and up-regulating CB1R function causing neurobehavioral abnormalities in adult mice. Int J Neuropsychopharmacol 2014; 18 (05) pyu028 . Doi: 10.1093/ijnp/pyu028
  • 58 Weaver IC, Cervoni N, Champagne FA. , et al. Epigenetic programming by maternal behavior. Nat Neurosci 2004; 7 (08) 847-854
  • 59 McGowan PO, Sasaki A, D'Alessio AC. , et al. Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nat Neurosci 2009; 12 (03) 342-348
  • 60 Murgatroyd C, Patchev AV, Wu Y. , et al. Dynamic DNA methylation programs persistent adverse effects of early-life stress. Nat Neurosci 2009; 12 (12) 1559-1566
  • 61 Jessberger S, Nakashima K, Clemenson Jr GD. , et al. Epigenetic modulation of seizure-induced neurogenesis and cognitive decline. J Neurosci 2007; 27 (22) 5967-5975
  • 62 Tsankova NM, Berton O, Renthal W, Kumar A, Neve RL, Nestler EJ. Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. Nat Neurosci 2006; 9 (04) 519-525
  • 63 Nghia NA, Hirasawa T, Kasai H. , et al. Long-term imipramine treatment increases N-methyl-d-aspartate receptor activity and expression via epigenetic mechanisms. Eur J Pharmacol 2015; 752: 69-77
  • 64 Guy J, Gan J, Selfridge J, Cobb S, Bird A. Reversal of neurological defects in a mouse model of Rett syndrome. Science 2007; 315 (5815): 1143-1147
  • 65 Derecki NC, Cronk JC, Lu Z. , et al. Wild-type microglia arrest pathology in a mouse model of Rett syndrome. Nature 2012; 484 (7392): 105-109
  • 66 Sztainberg Y, Chen HM, Swann JW. , et al. Reversal of phenotypes in MECP2 duplication mice using genetic rescue or antisense oligonucleotides. Nature 2015; 528 (7580): 123-126
  • 67 Hao S, Tang B, Wu Z. , et al. Forniceal deep brain stimulation rescues hippocampal memory in Rett syndrome mice. Nature 2015; 526 (7573): 430-434
  • 68 Kondo M, Gray LJ, Pelka GJ, Christodoulou J, Tam PP, Hannan AJ. Environmental enrichment ameliorates a motor coordination deficit in a mouse model of Rett syndrome--Mecp2 gene dosage effects and BDNF expression. Eur J Neurosci 2008; 27 (12) 3342-3350
  • 69 Lonetti G, Angelucci A, Morando L, Boggio EM, Giustetto M, Pizzorusso T. Early environmental enrichment moderates the behavioral and synaptic phenotype of MeCP2 null mice. Biol Psychiatry 2010; 67 (07) 657-665
  • 70 Nag N, Moriuchi JM, Peitzman CG, Ward BC, Kolodny NH, Berger-Sweeney JE. Environmental enrichment alters locomotor behaviour and ventricular volume in Mecp2 1lox mice. Behav Brain Res 2009; 196 (01) 44-48
  • 71 Kerr B, Silva PA, Walz K, Young JI. Unconventional transcriptional response to environmental enrichment in a mouse model of Rett syndrome. PLoS One 2010; 5 (07) e11534 . Doi: 10.1371/journal.pone.0011534
  • 72 Miller JL, Lynn CH, Shuster J, Driscoll DJ. A reduced-energy intake, well-balanced diet improves weight control in children with Prader-Willi syndrome. J Hum Nutr Diet 2013; 26 (01) 2-9
  • 73 Schlumpf M, Eiholzer U, Gygax M, Schmid S, van der Sluis I, l'Allemand D. A daily comprehensive muscle training programme increases lean mass and spontaneous activity in children with Prader-Willi syndrome after 6 months. J Pediatr Endocrinol Metab 2006; 19 (01) 65-74
  • 74 Angulo MA, Castro-Magana M, Lamerson M, Arguello R, Accacha S, Khan A. Final adult height in children with Prader-Willi syndrome with and without human growth hormone treatment. Am J Med Genet A 2007; 143A (13) 1456-1461
  • 75 Butler MG, Lee J, Cox DM. , et al. Growth charts for Prader-Willi syndrome during growth hormone treatment. Clin Pediatr (Phila) 2016; 55 (10) 957-974
  • 76 Reus L, Pillen S, Pelzer BJ. , et al. Growth hormone therapy, muscle thickness, and motor development in Prader-Willi syndrome: an RCT. Pediatrics 2014; 134 (06) e1619-e1627
  • 77 Myers SE, Whitman BY, Carrel AL, Moerchen V, Bekx MT, Allen DB. Two years of growth hormone therapy in young children with Prader-Willi syndrome: physical and neurodevelopmental benefits. Am J Med Genet A 2007; 143A (05) 443-448
  • 78 Siemensma EP, Tummers-de Lind van Wijngaarden RF, Festen DA. , et al. Beneficial effects of growth hormone treatment on cognition in children with Prader-Willi syndrome: a randomized controlled trial and longitudinal study. J Clin Endocrinol Metab 2012; 97 (07) 2307-2314
  • 79 Osório J. Growth and development: growth hormone therapy improves cognition in children with Prader-Willi syndrome. Nat Rev Endocrinol 2012; 8 (07) 382 . Doi: 10.1038/nrendo.2012.73
  • 80 Höybye C, Thorén M, Böhm B. Cognitive, emotional, physical and social effects of growth hormone treatment in adults with Prader-Willi syndrome. J Intellect Disabil Res 2005; 49 (Pt 4): 245-252
  • 81 GeneReviews® [Internet]. Prader-Willi Syndrome. . Available at: http://www.ncbi.nlm.nih.gov/books/NBK1330/ . Accessed August 22, 2016
  • 82 Sode-Carlsen R, Farholt S, Rabben KF. , et al. One year of growth hormone treatment in adults with Prader-Willi syndrome improves body composition: results from a randomized, placebo-controlled study. J Clin Endocrinol Metab 2010; 95 (11) 4943-4950
  • 83 Magiati I, Charman T, Howlin P. A two-year prospective follow-up study of community-based early intensive behavioural intervention and specialist nursery provision for children with autism spectrum disorders. J Child Psychol Psychiatry 2007; 48 (08) 803-812
  • 84 Tarabulsy GM, Pascuzzo K, Moss E. , et al. Attachment-based intervention for maltreating families. Am J Orthopsychiatry 2008; 78 (03) 322-332
  • 85 Reed P, Osborne LA, Corness M. Effectiveness of special nursery provision for children with autism spectrum disorders. Autism 2010; 14 (01) 67-82
  • 86 Devescovi R, Monasta L, Mancini A. , et al. Early diagnosis and Early Start Denver Model intervention in autism spectrum disorders delivered in an Italian Public Health System service. Neuropsychiatr Dis Treat 2016; 12: 1379-1384