Semin Respir Crit Care Med 2017; 38(03): 326-345
DOI: 10.1055/s-0037-1602583
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Emergence of Antimicrobial Resistance among Pseudomonas aeruginosa: Implications for Therapy

Joseph P. Lynch III
1   Division of Pulmonary, Critical Care Medicine, Allergy, and Clinical Immunology, Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California
,
George G. Zhanel
2   Department of Medical Microbiology/Infectious Diseases, Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
,
Nina M. Clark
3   Division of Infectious Diseases, Department of Medicine, Loyola University Medical Center, Maywood, Illinois
› Author Affiliations
Further Information

Publication History

Publication Date:
04 June 2017 (online)

Abstract

Pseudomonas aeruginosa (PA), a nonlactose fermenting gram-negative bacillus, is a common cause of nosocomial infections in critically ill or debilitated patients, particularly ventilator-associated pneumonia (VAP), and infections of bloodstream, urinary tract, intra-abdominal, wounds/skin/soft tissue. PA rarely affects healthy individuals, but may cause serious infections in patients with chronic structural lung disease, comorbidities, advanced age, impaired immune defenses, or with medical devices (e.g., urinary or intravascular catheters, foreign bodies). Treatment of pseudomonal infections is difficult, as PA is intrinsically resistant to multiple antimicrobials, and may acquire new resistance determinants even while on antimicrobial therapy. Mortality associated with pseudomonal VAP or bacteremias is high (> 35%) and optimal therapy is controversial. Over the past three decades, antimicrobial resistance among PA has escalated globally, via dissemination of several international multidrug-resistant “epidemic” clones. We review the emergence of antimicrobial resistance to this pathogen, and discuss approaches to therapy (both empirical and definitive).

 
  • References

  • 1 Ramírez-Estrada S, Borgatta B, Rello J. Pseudomonas aeruginosa ventilator-associated pneumonia management. Infect Drug Resist 2016; 9: 7-18
  • 2 Kollef MH, Chastre J, Fagon JY. , et al. Global prospective epidemiologic and surveillance study of ventilator-associated pneumonia due to Pseudomonas aeruginosa . Crit Care Med 2014; 42 (10) 2178-2187
  • 3 Tumbarello M, De Pascale G, Trecarichi EM. , et al. Clinical outcomes of Pseudomonas aeruginosa pneumonia in intensive care unit patients. Intensive Care Med 2013; 39 (04) 682-692
  • 4 Jones RN. Microbial etiologies of hospital-acquired bacterial pneumonia and ventilator-associated bacterial pneumonia. Clin Infect Dis 2010; 51 (Suppl. 01) S81-S87
  • 5 Guillamet CV, Vazquez R, Noe J, Micek ST, Kollef MH. A cohort study of bacteremic pneumonia: the importance of antibiotic resistance and appropriate initial therapy?. Medicine (Baltimore) 2016; 95 (35) e4708
  • 6 Venier AG, Gruson D, Lavigne T. , et al; REA-RAISIN group. Identifying new risk factors for Pseudomonas aeruginosa pneumonia in intensive care units: experience of the French national surveillance, REA-RAISIN. J Hosp Infect 2011; 79 (01) 44-48
  • 7 Micek ST, Wunderink RG, Kollef MH. , et al. An international multicenter retrospective study of Pseudomonas aeruginosa nosocomial pneumonia: impact of multidrug resistance. Crit Care 2015; 19: 219
  • 8 Peleg AY, Hooper DC. Hospital-acquired infections due to gram-negative bacteria. N Engl J Med 2010; 362 (19) 1804-1813
  • 9 Scheetz MH, Hoffman M, Bolon MK. , et al. Morbidity associated with Pseudomonas aeruginosa bloodstream infections. Diagn Microbiol Infect Dis 2009; 64 (03) 311-319
  • 10 Joo EJ, Kang CI, Ha YE. , et al. Risk factors for mortality in patients with Pseudomonas aeruginosa bacteremia: clinical impact of antimicrobial resistance on outcome. Microb Drug Resist 2011; 17 (02) 305-312
  • 11 Joo EJ, Kang CI, Ha YE. , et al. Clinical predictors of Pseudomonas aeruginosa bacteremia among gram-negative bacterial infections in non-neutropenic patients with solid tumor. J Infect 2011; 63 (03) 207-214
  • 12 Morata L, Cobos-Trigueros N, Martínez JA. , et al. Influence of multidrug resistance and appropriate empirical therapy on the 30-day mortality rate of Pseudomonas aeruginosa bacteremia. Antimicrob Agents Chemother 2012; 56 (09) 4833-4837
  • 13 Micek ST, Lloyd AE, Ritchie DJ, Reichley RM, Fraser VJ, Kollef MH. Pseudomonas aeruginosa bloodstream infection: importance of appropriate initial antimicrobial treatment. Antimicrob Agents Chemother 2005; 49 (04) 1306-1311
  • 14 Cheong HS, Kang CI, Wi YM. , et al. Clinical significance and predictors of community-onset Pseudomonas aeruginosa bacteremia. Am J Med 2008; 121 (08) 709-714
  • 15 Tam VH, Gamez EA, Weston JS. , et al. Outcomes of bacteremia due to Pseudomonas aeruginosa with reduced susceptibility to piperacillin-tazobactam: implications on the appropriateness of the resistance breakpoint. Clin Infect Dis 2008; 46 (06) 862-867
  • 16 Tago S, Hirai Y, Ainoda Y, Fujita T, Kikuchi K. Gram-negative rod bacteremia after cardiovascular surgery: clinical features and prognostic factors. J Microbiol Immunol Infect 2015; pii : S1684-1182(15)00814-2
  • 17 Al-Hasan MN, Wilson JW, Lahr BD, Eckel-Passow JE, Baddour LM. Incidence of Pseudomonas aeruginosa bacteremia: a population-based study. Am J Med 2008; 121 (08) 702-708
  • 18 Jean SS, Coombs G, Ling T. , et al. Epidemiology and antimicrobial susceptibility profiles of pathogens causing urinary tract infections in the Asia-Pacific region: results from the Study for Monitoring Antimicrobial Resistance Trends (SMART), 2010-2013. Int J Antimicrob Agents 2016; 47 (04) 328-334
  • 19 Goldufsky J, Wood SJ, Jayaraman V. , et al. Pseudomonas aeruginosa uses T3SS to inhibit diabetic wound healing. Wound Repair Regen 2015; 23 (04) 557-564
  • 20 Fazli M, Bjarnsholt T, Kirketerp-Møller K. , et al. Nonrandom distribution of Pseudomonas aeruginosa and Staphylococcus aureus in chronic wounds. J Clin Microbiol 2009; 47 (12) 4084-4089
  • 21 Lipsky BA, Tabak YP, Johannes RS, Vo L, Hyde L, Weigelt JA. Skin and soft tissue infections in hospitalised patients with diabetes: culture isolates and risk factors associated with mortality, length of stay and cost. Diabetologia 2010; 53 (05) 914-923
  • 22 Estahbanati HK, Kashani PP, Ghanaatpisheh F. Frequency of Pseudomonas aeruginosa serotypes in burn wound infections and their resistance to antibiotics. Burns 2002; 28 (04) 340-348
  • 23 Zhang HT, Liu H. Laboratory-based evaluation of MDR strains of Pseudomonas in patients with acute burn injuries. Int J Clin Exp Med 2015; 8 (09) 16512-16519
  • 24 Santucci SG, Gobara S, Santos CR, Fontana C, Levin AS. Infections in a burn intensive care unit: experience of seven years. J Hosp Infect 2003; 53 (01) 6-13
  • 25 Devrim İ, Kara A, Düzgöl M. , et al. Burn-associated bloodstream infections in pediatric burn patients: time distribution of etiologic agents. Burns 2017; 43 (01) 144-148
  • 26 Renner R, Sticherling M, Rüger R, Simon J. Persistence of bacteria like Pseudomonas aeruginosa in non-healing venous ulcers. Eur J Dermatol 2012; 22 (06) 751-757
  • 27 Serra R, Grande R, Butrico L. , et al. Chronic wound infections: the role of Pseudomonas aeruginosa and Staphylococcus aureus . Expert Rev Anti Infect Ther 2015; 13 (05) 605-613
  • 28 Carmeli Y, Armstrong J, Laud PJ. , et al. Ceftazidime-avibactam or best available therapy in patients with ceftazidime-resistant Enterobacteriaceae and Pseudomonas aeruginosa complicated urinary tract infections or complicated intra-abdominal infections (REPRISE): a randomised, pathogen-directed, phase 3 study. Lancet Infect Dis 2016; 16 (06) 661-673
  • 29 Seyman D, Ozen NS, Inan D, Ongut G, Ogunc D. Pseudomonas aeruginosa septic arthritis of knee after intra-articular ozone injection. New Microbiol 2012; 35 (03) 345-348
  • 30 Hatakenaka T, Uemura K, Itsubo T, Hayashi M, Uchiyama S, Kato H. Septic arthritis of the elbow in a child due to Pseudomonas aeruginosa: a case report. J Pediatr Orthop B 2014; 23 (03) 285-287
  • 31 Sepehri S, Poliquin G, Alfattoh N. , et al. Osteomyelitis due to multiple carbapenemase-producing gram-negative bacteria: the first case report of a GES-13-producing Pseudomonas aeruginosa isolate in Canada. Can J Infect Dis Med Microbiol 2014; 25 (04) 229-231
  • 32 Chen X, Bleier BS, Lefebvre DR, Lee NG. Pseudomonas aeruginosa: a masquerader in sino-orbital infections. Ophthal Plast Reconstr Surg 2016; 32 (05) 374-377
  • 33 Hagiya H, Tanaka T, Takimoto K. , et al. Non-nosocomial healthcare-associated left-sided Pseudomonas aeruginosa endocarditis: a case report and literature review. BMC Infect Dis 2016; 16 (01) 431
  • 34 Dawson NL, Brumble LM, Pritt BS, Yao JD, Echols JD, Alvarez S. Left-sided Pseudomonas aeruginosa endocarditis in patients without injection drug use. Medicine (Baltimore) 2011; 90 (04) 250-255
  • 35 Reyes MP, Ali A, Mendes RE, Biedenbach DJ. Resurgence of Pseudomonas endocarditis in Detroit, 2006-2008. Medicine (Baltimore) 2009; 88 (05) 294-301
  • 36 Pai S, Bedford L, Ruramayi R. , et al. Pseudomonas aeruginosa meningitis/ventriculitis in a UK tertiary referral hospital. QJM 2016; 109 (02) 85-89
  • 37 Parkins MD, Gregson DB, Pitout JD, Ross T, Laupland KB. Population-based study of the epidemiology and the risk factors for Pseudomonas aeruginosa bloodstream infection. Infection 2010; 38 (01) 25-32
  • 38 Williams D, Evans B, Haldenby S. , et al. Divergent, coexisting Pseudomonas aeruginosa lineages in chronic cystic fibrosis lung infections. Am J Respir Crit Care Med 2015; 191 (07) 775-785
  • 39 Goldman N, Loebinger MR, Wilson R. Long-term antibiotic treatment for non-cystic fibrosis bronchiectasis in adults: evidence, current practice and future use. Expert Rev Respir Med 2016; 10 (12) 1259-1268
  • 40 Wilson R, Aksamit T, Aliberti S. , et al. Challenges in managing Pseudomonas aeruginosa in non-cystic fibrosis bronchiectasis. Respir Med 2016; 117: 179-189
  • 41 Arancibia F, Bauer TT, Ewig S. , et al. Community-acquired pneumonia due to gram-negative bacteria and Pseudomonas aeruginosa: incidence, risk, and prognosis. Arch Intern Med 2002; 162 (16) 1849-1858
  • 42 Rello J, Rodriguez A, Torres A. , et al. Implications of COPD in patients admitted to the intensive care unit by community-acquired pneumonia. Eur Respir J 2006; 27 (06) 1210-1216
  • 43 Afessa B, Green B. Bacterial pneumonia in hospitalized patients with HIV infection: the pulmonary complications, ICU support, and prognostic factors of hospitalized patients with HIV (PIP) study. Chest 2000; 117 (04) 1017-1022
  • 44 Hirschtick RE, Glassroth J, Jordan MC. , et al; Pulmonary Complications of HIV Infection Study Group. Bacterial pneumonia in persons infected with the human immunodeficiency virus. N Engl J Med 1995; 333 (13) 845-851
  • 45 Tumbarello M, Tacconelli E, de Gaetano Donati K. , et al. Nosocomial bacterial pneumonia in human immunodeficiency virus infected subjects: incidence, risk factors and outcome. Eur Respir J 2001; 17 (04) 636-640
  • 46 Asgari S, McLaren PJ, Peake J. , et al; Swiss Pediatric Sepsis Study. Exome sequencing reveals primary immunodeficiencies in children with community-acquired Pseudomonas aeruginosa sepsis. Front Immunol 2016; 7: 357
  • 47 Flinn A, McDermott M, Butler KM. A child with septic shock and purpura. JAMA Pediatr 2016; 170 (04) 391-392
  • 48 Picard C, von Bernuth H, Ghandil P. , et al. Clinical features and outcome of patients with IRAK-4 and MyD88 deficiency. Medicine (Baltimore) 2010; 89 (06) 403-425
  • 49 Picard C, Al-Herz W, Bousfiha A. , et al. Primary immunodeficiency diseases: an update on the classification from the International Union of Immunological Societies Expert Committee for Primary Immunodeficiency 2015. J Clin Immunol 2015; 35 (08) 696-726
  • 50 Stergiopoulou T, Walsh TJ, Seghaye MC. , et al. Deficiency of interleukin-1 receptor-associated kinase 4 presenting as fatal Pseudomonas aeruginosa bacteremia in two siblings. Pediatr Infect Dis J 2015; 34 (03) 299-300
  • 51 Huang YC, Lin TY, Wang CH. Community-acquired Pseudomonas aeruginosa sepsis in previously healthy infants and children: analysis of forty-three episodes. Pediatr Infect Dis J 2002; 21 (11) 1049-1052
  • 52 Gudiol C, Royo-Cebrecos C, Laporte J. , et al. Clinical features, aetiology and outcome of bacteraemic pneumonia in neutropenic cancer patients. Respirology 2016; 21 (08) 1411-1418
  • 53 Marin M, Gudiol C, Ardanuy C. , et al. Bloodstream infections in neutropenic patients with cancer: differences between patients with haematological malignancies and solid tumours. J Infect 2014; 69 (05) 417-423
  • 54 Chatzinikolaou I, Abi-Said D, Bodey GP, Rolston KV, Tarrand JJ, Samonis G. Recent experience with Pseudomonas aeruginosa bacteremia in patients with cancer: retrospective analysis of 245 episodes. Arch Intern Med 2000; 160 (04) 501-509
  • 55 Carratalà J, Rosón B, Fernández-Sevilla A, Alcaide F, Gudiol F. Bacteremic pneumonia in neutropenic patients with cancer: causes, empirical antibiotic therapy, and outcome. Arch Intern Med 1998; 158 (08) 868-872
  • 56 Johnson LE, D'Agata EM, Paterson DL. , et al. Pseudomonas aeruginosa bacteremia over a 10-year period: multidrug resistance and outcomes in transplant recipients. Transpl Infect Dis 2009; 11 (03) 227-234
  • 57 Hobson CE, Moy JD, Byers KE, Raz Y, Hirsch BE, McCall AA. Malignant otitis externa: evolving pathogens and implications for diagnosis and treatment. Otolaryngol Head Neck Surg 2014; 151 (01) 112-116
  • 58 Aggarwal M, Vijan V, Vupputuri A, Nandakumar S, Mathew N. A rare case of fatal endocarditis and sepsis caused by Pseudomonas aeruginosa in a patient with chronic renal failure. J Clin Diagn Res 2016; 10 (07) OD12-OD13
  • 59 Wang PH, Wang HC. Risk factors to predict drug-resistant pathogens in hemodialysis-associated pneumonia. BMC Infect Dis 2016; 16: 377
  • 60 Murray EC, Marek A, Thomson PC, Coia JE. Gram-negative bacteraemia in haemodialysis. Nephrol Dial Transplant 2015; 30 (07) 1202-1208
  • 61 Yıldırmak T, Gedik H, Simşek F, Kantürk A. Community-acquired intracranial suppurative infections: a 15-year report. Surg Neurol Int 2014; 5: 142
  • 62 Burow M, Forst R, Forst J, Hofner B, Fujak A. Perioperative complications of scoliosis surgery in patients with Duchenne muscular dystrophy and spinal muscular atrophy, focussing on wound healing disorders. Int J Neurosci 2017; 127 (06) 479-485
  • 63 Meher SK, Jain H, Tripathy LN, Basu S. Chronic Pseudomonas aeruginosa cervical osteomyelitis. J Craniovertebr Junction Spine 2016; 7 (04) 276-278
  • 64 El Solh AA. Nursing home-acquired pneumonia. Semin Respir Crit Care Med 2009; 30 (01) 16-25
  • 65 Marrie TJ. Pneumonia in the long-term-care facility. Infect Control Hosp Epidemiol 2002; 23 (03) 159-164
  • 66 El-Solh AA, Sikka P, Ramadan F, Davies J. Etiology of severe pneumonia in the very elderly. Am J Respir Crit Care Med 2001; 163 (3 Pt 1): 645-651
  • 67 Muder RR. Pneumonia in residents of long-term care facilities: epidemiology, etiology, management, and prevention. Am J Med 1998; 105 (04) 319-330
  • 68 El Solh AA, Pietrantoni C, Bhat A, Bhora M, Berbary E. Indicators of potentially drug-resistant bacteria in severe nursing home-acquired pneumonia. Clin Infect Dis 2004; 39 (04) 474-480
  • 69 Goldman M, Rosenfeld-Yehoshua N, Lerner-Geva L, Lazarovitch T, Schwartz D, Grisaru-Soen G. Clinical features of community-acquired Pseudomonas aeruginosa urinary tract infections in children. Pediatr Nephrol 2008; 23 (05) 765-768
  • 70 Duszyńska W, Rosenthal VD, Szczęsny A. , et al. Urinary tract infections in intensive care unit patients - a single-centre, 3-year observational study according to the INICC project. Anaesthesiol Intensive Ther 2016; 48 (01) 1-6
  • 71 Dinh A, Toumi A, Blanc C. , et al. Management of febrile urinary tract infection among spinal cord injured patients. BMC Infect Dis 2016; 16: 156
  • 72 Tao L, Hu B, Rosenthal VD, Gao X, He L. Device-associated infection rates in 398 intensive care units in Shanghai, China: International Nosocomial Infection Control Consortium (INICC) findings. Int J Infect Dis 2011; 15 (11) e774-e780
  • 73 Danin PE, Girou E, Legrand P. , et al. Description and microbiology of endotracheal tube biofilm in mechanically ventilated subjects. Respir Care 2015; 60 (01) 21-29
  • 74 Glikson E, Sagiv D, Wolf M, Shapira Y. Necrotizing otitis externa: diagnosis, treatment, and outcome in a case series. Diagn Microbiol Infect Dis 2017; 87 (01) 74-78
  • 75 Loh S, Loh WS. Malignant otitis externa: an Asian perspective on treatment outcomes and prognostic factors. Otolaryngol Head Neck Surg 2013; 148 (06) 991-996
  • 76 Lutz JK, Lee J. Prevalence and antimicrobial-resistance of Pseudomonas aeruginosa in swimming pools and hot tubs. Int J Environ Res Public Health 2011; 8 (02) 554-564
  • 77 Mohammadpour M, Sabet FA. Long-term outcomes of amniotic membrane transplantation in contact lens-induced Pseudomonas keratitis with impending corneal perforation. J Ophthalmic Vis Res 2016; 11 (01) 37-41
  • 78 Hedayati H, Ghaderpanah M, Rasoulinejad SA, Montazeri M. Clinical presentation and antibiotic susceptibility of contact lens associated microbial keratitis. J Pathogens 2015; 2015: 152767
  • 79 Stapleton F, Keay LJ, Sanfilippo PG, Katiyar S, Edwards KP, Naduvilath T. Relationship between climate, disease severity, and causative organism for contact lens-associated microbial keratitis in Australia. Am J Ophthalmol 2007; 144 (05) 690-698
  • 80 Centers for Disease Control and Prevention (CDC). Pseudomonas dermatitis/folliculitis associated with pools and hot tubs--Colorado and Maine, 1999-2000. MMWR Morb Mortal Wkly Rep 2000; 49 (48) 1087-1091
  • 81 Giordano M, Ciarambino T, Politi C, Aurilio C, Paolisso G. Necrotizing painful skin lesion after a mosquito bite in healthy elderly woman: case report. Am J Emerg Med 2014; 32 (09) 1148.e3-1148.e4
  • 82 Keene WE, Markum AC, Samadpour M. Outbreak of Pseudomonas aeruginosa infections caused by commercial piercing of upper ear cartilage. JAMA 2004; 291 (08) 981-985
  • 83 Seok Y, Shin H, Lee Y. , et al. First report of bloodstream infection caused by Pseudomonas fulva . J Clin Microbiol 2010; 48 (07) 2656-2657
  • 84 Liu Y, Liu K, Yu X, Li B, Cao B. Identification and control of a Pseudomonas spp. (P. fulva and P. putida) bloodstream infection outbreak in a teaching hospital in Beijing, China. Int J Infect Dis 2014; 23: 105-108
  • 85 Cobo F, Jiménez G, Rodríguez-Granger J, Sampedro A. Posttraumatic skin and soft-tissue infection due to Pseudomonas fulva . Case Rep Infect Dis 2016; 2016: 8716068
  • 86 Ocampo-Sosa AA, Guzmán-Gómez LP, Fernández-Martínez M. , et al. Isolation of VIM-2-producing Pseudomonas monteilii clinical strains disseminated in a tertiary hospital in northern Spain. Antimicrob Agents Chemother 2015; 59 (02) 1334-1336
  • 87 Gershman MD, Kennedy DJ, Noble-Wang J. , et al; Pseudomonas fluorescens Investigation Team. Multistate outbreak of Pseudomonas fluorescens bloodstream infection after exposure to contaminated heparinized saline flush prepared by a compounding pharmacy. Clin Infect Dis 2008; 47 (11) 1372-1379
  • 88 Juan C, Zamorano L, Mena A, Albertí S, Pérez JL, Oliver A. Metallo-beta-lactamase-producing Pseudomonas putida as a reservoir of multidrug resistance elements that can be transferred to successful Pseudomonas aeruginosa clones. J Antimicrob Chemother 2010; 65 (03) 474-478
  • 89 McCarthy K. Pseudomonas aeruginosa: evolution of antimicrobial resistance and implications for therapy. Semin Respir Crit Care Med 2015; 36 (01) 44-55
  • 90 Oliver A, Mulet X, López-Causapé C, Juan C. The increasing threat of Pseudomonas aeruginosa high-risk clones. Drug Resist Updat 2015; 21-22: 41-59
  • 91 Traugott KA, Echevarria K, Maxwell P, Green K, Lewis II JS. Monotherapy or combination therapy? The Pseudomonas aeruginosa conundrum. Pharmacotherapy 2011; 31 (06) 598-608
  • 92 Bliziotis IA, Petrosillo N, Michalopoulos A, Samonis G, Falagas ME. Impact of definitive therapy with beta-lactam monotherapy or combination with an aminoglycoside or a quinolone for Pseudomonas aeruginosa bacteremia. PLoS One 2011; 6 (10) e26470
  • 93 Hilf M, Yu VL, Sharp J, Zuravleff JJ, Korvick JA, Muder RR. Antibiotic therapy for Pseudomonas aeruginosa bacteremia: outcome correlations in a prospective study of 200 patients. Am J Med 1989; 87 (05) 540-546
  • 94 Silby MW, Winstanley C, Godfrey SA, Levy SB, Jackson RW. Pseudomonas genomes: diverse and adaptable. FEMS Microbiol Rev 2011; 35 (04) 652-680
  • 95 Fujitani S, Sun HY, Yu VL, Weingarten JA. Pneumonia due to Pseudomonas aeruginosa: part I: epidemiology, clinical diagnosis, and source. Chest 2011; 139 (04) 909-919
  • 96 Turano H, Gomes F, Medeiros M. , et al. Presence of high-risk clones of OXA-23-producing Acinetobacter baumannii (ST79) and SPM-1-producing Pseudomonas aeruginosa (ST277) in environmental water samples in Brazil. Diagn Microbiol Infect Dis 2016; 86 (01) 80-82
  • 97 Trautmann M, Michalsky T, Wiedeck H, Radosavljevic V, Ruhnke M. Tap water colonization with Pseudomonas aeruginosa in a surgical intensive care unit (ICU) and relation to Pseudomonas infections of ICU patients. Infect Control Hosp Epidemiol 2001; 22 (01) 49-52
  • 98 Blanc DS, Nahimana I, Petignat C, Wenger A, Bille J, Francioli P. Faucets as a reservoir of endemic Pseudomonas aeruginosa colonization/infections in intensive care units. Intensive Care Med 2004; 30 (10) 1964-1968
  • 99 Salm F, Deja M, Gastmeier P. , et al. Prolonged outbreak of clonal MDR Pseudomonas aeruginosa on an intensive care unit: contaminated sinks and contamination of ultra-filtrate bags as possible route of transmission?. Antimicrob Resist Infect Control 2016; 5: 53
  • 100 Mena KD, Gerba CP. Risk assessment of Pseudomonas aeruginosa in water. Rev Environ Contam Toxicol 2009; 201: 71-115
  • 101 Guida M, Di Onofrio V, Gallè F. , et al. Pseudomonas aeruginosa in swimming pool water: evidences and perspectives for a new control strategy. Int J Environ Res Public Health 2016; 13 (09) 13
  • 102 Hocquet D, Muller A, Bertrand X. What happens in hospitals does not stay in hospitals: antibiotic-resistant bacteria in hospital wastewater systems. J Hosp Infect 2016; 93 (04) 395-402
  • 103 Bou R, Aguilar A, Perpiñán J. , et al. Nosocomial outbreak of Pseudomonas aeruginosa infections related to a flexible bronchoscope. J Hosp Infect 2006; 64 (02) 129-135
  • 104 Kirschke DL, Jones TF, Craig AS. , et al. Pseudomonas aeruginosa and Serratia marcescens contamination associated with a manufacturing defect in bronchoscopes. N Engl J Med 2003; 348 (03) 214-220
  • 105 Banerjee D, Stableforth D. The treatment of respiratory pseudomonas infection in cystic fibrosis: what drug and which way?. Drugs 2000; 60 (05) 1053-1064
  • 106 Morrison Jr AJ, Wenzel RP. Epidemiology of infections due to Pseudomonas aeruginosa . Rev Infect Dis 1984; 6 (Suppl. 03) S627-S642
  • 107 Blanc DS, Petignat C, Janin B, Bille J, Francioli P. Frequency and molecular diversity of Pseudomonas aeruginosa upon admission and during hospitalization: a prospective epidemiologic study. Clin Microbiol Infect 1998; 4 (05) 242-247
  • 108 Mulcahy LR, Isabella VM, Lewis K. Pseudomonas aeruginosa biofilms in disease. Microb Ecol 2014; 68 (01) 1-12
  • 109 Guy M, Vanhems P, Dananché C. , et al. Outbreak of pulmonary Pseudomonas aeruginosa and Stenotrophomonas maltophilia infections related to contaminated bronchoscope suction valves, Lyon, France, 2014. Euro Surveill 2016; 21 (28) 21
  • 110 Bergmans DC, Bonten MJ, van Tiel FH. , et al. Cross-colonisation with Pseudomonas aeruginosa of patients in an intensive care unit. Thorax 1998; 53 (12) 1053-1058
  • 111 Founou LL, Founou RC, Essack SY. Antibiotic resistance in the food chain: a developing country-perspective. Front Microbiol 2016; 7: 1881
  • 112 Sadikot RT, Blackwell TS, Christman JW, Prince AS. Pathogen-host interactions in Pseudomonas aeruginosa pneumonia. Am J Respir Crit Care Med 2005; 171 (11) 1209-1223
  • 113 Silva LV, Galdino AC, Nunes AP. , et al. Virulence attributes in Brazilian clinical isolates of Pseudomonas aeruginosa . Int J Med Microbiol 2014; 304 (08) 990-1000
  • 114 Peña C, Cabot G, Gómez-Zorrilla S. , et al; Spanish Network for Research in Infectious Diseases (REIPI). Influence of virulence genotype and resistance profile in the mortality of Pseudomonas aeruginosa bloodstream infections. Clin Infect Dis 2015; 60 (04) 539-548
  • 115 Huber P, Basso P, Reboud E, Attrée I. Pseudomonas aeruginosa renews its virulence factors. Environ Microbiol Rep 2016
  • 116 Gales AC, Jones RN, Turnidge J, Rennie R, Ramphal R. Characterization of Pseudomonas aeruginosa isolates: occurrence rates, antimicrobial susceptibility patterns, and molecular typing in the global SENTRY Antimicrobial Surveillance Program, 1997-1999. Clin Infect Dis 2001; 32 (Suppl. 02) S146-S155
  • 117 Magill SS, Edwards JR, Fridkin SK. ; Emerging Infections Program Healthcare-Associated Infections and Antimicrobial Use Prevalence Survey Team. Survey of health care-associated infections. N Engl J Med 2014; 370 (26) 2542-2543
  • 118 Zarb P, Coignard B, Griskeviciene J. , et al; National Contact Points for the ECDC pilot point prevalence survey; Hospital Contact Points for the ECDC pilot point prevalence survey. The European Centre for Disease Prevention and Control (ECDC) pilot point prevalence survey of healthcare-associated infections and antimicrobial use. Euro Surveill 2012; 17 (46) 17
  • 119 Vincent JL, Bihari DJ, Suter PM. , et al; EPIC International Advisory Committee. The prevalence of nosocomial infection in intensive care units in Europe. Results of the European Prevalence of Infection in Intensive Care (EPIC) Study. JAMA 1995; 274 (08) 639-644
  • 120 Vincent JL, Sakr Y, Sprung CL. , et al; Sepsis Occurrence in Acutely Ill Patients Investigators. Sepsis in European intensive care units: results of the SOAP study. Crit Care Med 2006; 34 (02) 344-353
  • 121 Vincent JL, Rello J, Marshall J. , et al; EPIC II Group of Investigators. International study of the prevalence and outcomes of infection in intensive care units. JAMA 2009; 302 (21) 2323-2329
  • 122 Neuhauser MM, Weinstein RA, Rydman R, Danziger LH, Karam G, Quinn JP. Antibiotic resistance among gram-negative bacilli in US intensive care units: implications for fluoroquinolone use. JAMA 2003; 289 (07) 885-888
  • 123 Kollef MH, Shorr A, Tabak YP, Gupta V, Liu LZ, Johannes RS. Epidemiology and outcomes of health-care-associated pneumonia: results from a large US database of culture-positive pneumonia. Chest 2005; 128 (06) 3854-3862
  • 124 Trouillet JL, Chastre J, Vuagnat A. , et al. Ventilator-associated pneumonia caused by potentially drug-resistant bacteria. Am J Respir Crit Care Med 1998; 157 (02) 531-539
  • 125 Rello J, Sa-Borges M, Correa H, Leal SR, Baraibar J. Variations in etiology of ventilator-associated pneumonia across four treatment sites: implications for antimicrobial prescribing practices. Am J Respir Crit Care Med 1999; 160 (02) 608-613
  • 126 Fernández-Barat L, Ferrer M, De Rosa F. , et al. Intensive care unit-acquired pneumonia due to Pseudomonas aeruginosa with and without multidrug resistance. J Infect 2017; 74 (02) 142-152
  • 127 Flamm RK, Nichols WW, Sader HS, Farrell DJ, Jones RN. In vitro activity of ceftazidime/avibactam against gram-negative pathogens isolated from pneumonia in hospitalised patients, including ventilated patients. Int J Antimicrob Agents 2016; 47 (03) 235-242
  • 128 Resende MM, Monteiro SG, Callegari B, Figueiredo PM, Monteiro CR, Monteiro-Neto V. Epidemiology and outcomes of ventilator-associated pneumonia in northern Brazil: an analytical descriptive prospective cohort study. BMC Infect Dis 2013; 13: 119
  • 129 Chung DR, Song JH, Kim SH. , et al; Asian Network for Surveillance of Resistant Pathogens Study Group. High prevalence of multidrug-resistant nonfermenters in hospital-acquired pneumonia in Asia. Am J Respir Crit Care Med 2011; 184 (12) 1409-1417
  • 130 Zhang Y, Yao Z, Zhan S. , et al. Disease burden of intensive care unit-acquired pneumonia in China: a systematic review and meta-analysis. Int J Infect Dis 2014; 29: 84-90
  • 131 Ding C, Yang Z, Wang J. , et al. Prevalence of Pseudomonas aeruginosa and antimicrobial-resistant Pseudomonas aeruginosa in patients with pneumonia in mainland China: a systematic review and meta-analysis. Int J Infect Dis 2016; 49: 119-128
  • 132 Biedenbach DJ, Giao PT, Hung Van P. , et al. Antimicrobial-resistant Pseudomonas aeruginosa and Acinetobacter baumannii from patients with hospital-acquired or ventilator-associated pneumonia in Vietnam. Clin Ther 2016; 38 (09) 2098-2105
  • 133 Ali HS, Khan FY, George S, Shaikh N, Al-Ajmi J. Epidemiology and outcome of ventilator-associated pneumonia in a heterogeneous ICU population in Qatar. BioMed Res Int 2016; 2016: 8231787
  • 134 Rosenthal VD, Maki DG, Mehta Y. , et al; International Nosocomial Infection Control Consortium. International Nosocomial Infection Control Consortium (INICC) report, data summary of 43 countries for 2007-2012. Device-associated module. Am J Infect Control 2014; 42 (09) 942-956
  • 135 Sader HS, Farrell DJ, Flamm RK, Jones RN. Antimicrobial susceptibility of gram-negative organisms isolated from patients hospitalised with pneumonia in US and European hospitals: results from the SENTRY Antimicrobial Surveillance Program, 2009-2012. Int J Antimicrob Agents 2014; 43 (04) 328-334
  • 136 He S, Chen B, Li W. , et al. Ventilator-associated pneumonia after cardiac surgery: a meta-analysis and systematic review. J Thorac Cardiovasc Surg 2014; 148 (06) 3148-55.e1 , 5
  • 137 Potron A, Poirel L, Nordmann P. Emerging broad-spectrum resistance in Pseudomonas aeruginosa and Acinetobacter baumannii: mechanisms and epidemiology. Int J Antimicrob Agents 2015; 45 (06) 568-585
  • 138 Woodford N, Turton JF, Livermore DM. Multiresistant gram-negative bacteria: the role of high-risk clones in the dissemination of antibiotic resistance. FEMS Microbiol Rev 2011; 35 (05) 736-755
  • 139 Qureshi S, Agrawal C, Madan M, Pandey A, Chauhan H. Superbugs causing ventilator associated pneumonia in a tertiary care hospital and the return of pre-antibiotic era!. Indian J Med Microbiol 2015; 33 (02) 286-289
  • 140 Hammer KL, Justo JA, Bookstaver PB, Kohn J, Albrecht H, Al-Hasan MN. Differential effect of prior β-lactams and fluoroquinolones on risk of bloodstream infections secondary to Pseudomonas aeruginosa . Diagn Microbiol Infect Dis 2017; 87 (01) 87-91
  • 141 Tumbarello M, Repetto E, Trecarichi EM. , et al. Multidrug-resistant Pseudomonas aeruginosa bloodstream infections: risk factors and mortality. Epidemiol Infect 2011; 139 (11) 1740-1749
  • 142 Si D, Runnegar N, Marquess J, Rajmokan M, Playford EG. Characterising health care-associated bloodstream infections in public hospitals in Queensland, 2008-2012. Med J Aust 2016; 204 (07) 276
  • 143 von Baum H, Welte T, Marre R, Suttorp N, Ewig S. ; CAPNETZ study group. Community-acquired pneumonia through Enterobacteriaceae and Pseudomonas aeruginosa: diagnosis, incidence and predictors. Eur Respir J 2010; 35 (03) 598-605
  • 144 Rodrigo-Troyano A, Suarez-Cuartin G, Peiró M. , et al. Pseudomonas aeruginosa resistance patterns and clinical outcomes in hospitalized exacerbations of COPD. Respirology 2016; 21 (07) 1235-1242
  • 145 Lynch III JP, Sayah DM, Belperio JA, Weigt SS. Lung transplantation for cystic fibrosis: results, indications, complications, and controversies. Semin Respir Crit Care Med 2015; 36 (02) 299-320
  • 146 Bendiak GN, Ratjen F. The approach to Pseudomonas aeruginosa in cystic fibrosis. Semin Respir Crit Care Med 2009; 30 (05) 587-595
  • 147 Fothergill JL, Walshaw MJ, Winstanley C. Transmissible strains of Pseudomonas aeruginosa in cystic fibrosis lung infections. Eur Respir J 2012; 40 (01) 227-238
  • 148 Brodt AM, Stovold E, Zhang L. Inhaled antibiotics for stable non-cystic fibrosis bronchiectasis: a systematic review. Eur Respir J 2014; 44 (02) 382-393
  • 149 McShane PJ, Naureckas ET, Tino G, Strek ME. Non-cystic fibrosis bronchiectasis. Am J Respir Crit Care Med 2013; 188 (06) 647-656
  • 150 McDonnell MJ, Jary HR, Perry A. , et al. Non cystic fibrosis bronchiectasis: a longitudinal retrospective observational cohort study of Pseudomonas persistence and resistance. Respir Med 2015; 109 (06) 716-726
  • 151 Finch S, McDonnell MJ, Abo-Leyah H, Aliberti S, Chalmers JD. A comprehensive analysis of the impact of Pseudomonas aeruginosa colonization on prognosis in adult bronchiectasis. Ann Am Thorac Soc 2015; 12 (11) 1602-1611
  • 152 Buscot M, Pottier H, Marquette CH, Leroy S. Phenotyping adults with non-cystic fibrosis bronchiectasis: a 10-year cohort study in a French Regional University Hospital Center. Respiration 2016; 92 (01) 1-8
  • 153 Mustafa MH, Chalhoub H, Denis O. , et al. Antimicrobial susceptibility of Pseudomonas aeruginosa isolated from cystic fibrosis patients through Northern Europe. Antimicrob Agents Chemother 2016; 60 (11) 6735-6741
  • 154 Greipel L, Fischer S, Klockgether J. , et al. Molecular epidemiology of mutations in antimicrobial resistance loci of Pseudomonas aeruginosa isolates from cystic fibrosis airways. Antimicrob Agents Chemother 2016; 60 (11) 6726-6734
  • 155 Logan LK, Gandra S, Mandal S. , et al; Prevention Epicenters Program, US Centers for Disease Control and Prevention. Multidrug- and carbapenem-resistant Pseudomonas aeruginosa in children, United States, 1999-2012. J Pediatric Infect Dis Soc 2016; piw064
  • 156 Cigana C, Melotti P, Baldan R. , et al. Genotypic and phenotypic relatedness of Pseudomonas aeruginosa isolates among the major cystic fibrosis patient cohort in Italy. BMC Microbiol 2016; 16 (01) 142
  • 157 Jani M, Mathee K, Azad RK. Identification of novel genomic islands in Liverpool epidemic strain of Pseudomonas aeruginosa using segmentation and clustering. Front Microbiol 2016; 7: 1210
  • 158 van Mansfeld R, de Been M, Paganelli F, Yang L, Bonten M, Willems R. Within-Host evolution of the Dutch high-prevalent Pseudomonas aeruginosa clone ST406 during chronic colonization of a patient with cystic fibrosis. PLoS One 2016; 11 (06) e0158106
  • 159 Workentine M, Poonja A, Waddell B. , et al. Development and validation of a PCR assay to detect the prairie epidemic strain of Pseudomonas aeruginosa from patients with cystic fibrosis. J Clin Microbiol 2016; 54 (02) 489-491
  • 160 Duong J, Booth SC, McCartney NK, Rabin HR, Parkins MD, Storey DG. Phenotypic and genotypic comparison of epidemic and non-epidemic strains of Pseudomonas aeruginosa from individuals with cystic fibrosis. PLoS One 2015; 10 (11) e0143466
  • 161 Pritchard J, Thakrar MV, Somayaji R. , et al. Epidemic Pseudomonas aeruginosa infection in patients with cystic fibrosis is not a risk factor for poor clinical outcomes following lung transplantation. J Cyst Fibros 2016; 15 (03) 392-399
  • 162 Manfredi R, Nanetti A, Ferri M, Chiodo F. Pseudomonas spp. complications in patients with HIV disease: an eight-year clinical and microbiological survey. Eur J Epidemiol 2000; 16 (02) 111-118
  • 163 Meynard JL, Barbut F, Guiguet M. , et al. Pseudomonas aeruginosa infection in human immunodeficiency virus infected patients. J Infect 1999; 38 (03) 176-181
  • 164 Allen SH, Brennan-Benson P, Nelson M. , et al. Pneumonia due to antibiotic resistant Streptococcus pneumoniae and Pseudomonas aeruginosa in the HAART era. Postgrad Med J 2003; 79 (938) 691-694
  • 165 Madeddu G, Porqueddu EM, Cambosu F. , et al. Bacterial community acquired pneumonia in HIV-infected inpatients in the highly active antiretroviral therapy era. Infection 2008; 36 (03) 231-236
  • 166 López-Palomo C, Martín-Zamorano M, Benítez E. , et al. Pneumonia in HIV-infected patients in the HAART era: incidence, risk, and impact of the pneumococcal vaccination. J Med Virol 2004; 72 (04) 517-524
  • 167 Franzetti F, Grassini A, Piazza M. , et al. Nosocomial bacterial pneumonia in HIV-infected patients: risk factors for adverse outcome and implications for rational empiric antibiotic therapy. Infection 2006; 34 (01) 9-16
  • 168 Ali NJ, Kessel D, Miller RF. Bronchopulmonary infection with Pseudomonas aeruginosa in patients infected with human immunodeficiency virus. Genitourin Med 1995; 71 (02) 73-77
  • 169 Stoma I, Karpov I, Milanovich N, Uss A, Iskrov I. Risk factors for mortality in patients with bloodstream infections during the pre-engraftment period after hematopoietic stem cell transplantation. Blood Res 2016; 51 (02) 102-106
  • 170 Castagnola E, Faraci M. Management of bacteremia in patients undergoing hematopoietic stem cell transplantation. Expert Rev Anti Infect Ther 2009; 7 (05) 607-621
  • 171 Wang L, Wang Y, Fan X, Tang W, Hu J. Prevalence of resistant gram-negative bacilli in bloodstream infection in febrile neutropenia patients undergoing hematopoietic stem cell transplantation: a single center retrospective cohort study. Medicine (Baltimore) 2015; 94 (45) e1931
  • 172 Kikuchi M, Akahoshi Y, Nakano H. , et al. Risk factors for pre- and post-engraftment bloodstream infections after allogeneic hematopoietic stem cell transplantation. Transpl Infect Dis 2015; 17 (01) 56-65
  • 173 Sanz J, Cano I, González-Barberá EM. , et al. Bloodstream infections in adult patients undergoing cord blood transplantation from unrelated donors after myeloablative conditioning regimen. Biol Blood Marrow Transplant 2015; 21 (04) 755-760
  • 174 Kritikos A, Manuel O. Bloodstream infections after solid-organ transplantation. Virulence 2016; 7 (03) 329-340
  • 175 Luo A, Zhong Z, Wan Q, Ye Q. The distribution and resistance of pathogens among solid organ transplant recipients with Pseudomonas aeruginosa infections. Med Sci Monit 2016; 22: 1124-1130
  • 176 Camargo LF, Marra AR, Pignatari AC. , et al; Brazilian SCOPE Study Group. Nosocomial bloodstream infections in a nationwide study: comparison between solid organ transplant patients and the general population. Transpl Infect Dis 2015; 17 (02) 308-313
  • 177 Su H, Ye Q, Wan Q, Zhou J. Predictors of mortality in abdominal organ transplant recipients with Pseudomonas aeruginosa infections. Ann Transplant 2016; 21: 86-93
  • 178 Singh N, Gayowski T, Rihs JD, Wagener MM, Marino IR. Evolving trends in multiple-antibiotic-resistant bacteria in liver transplant recipients: a longitudinal study of antimicrobial susceptibility patterns. Liver Transpl 2001; 7 (01) 22-26
  • 179 Palmer SM, Alexander BD, Sanders LL. , et al. Significance of blood stream infection after lung transplantation: analysis in 176 consecutive patients. Transplantation 2000; 69 (11) 2360-2366
  • 180 Naidoo R, Ungerer L, Cooper M, Pienaar S, Eley BS. Primary immunodeficiencies: a 27-year review at a tertiary paediatric hospital in Cape Town, South Africa. J Clin Immunol 2011; 31 (01) 99-105
  • 181 Cillóniz C, Gabarrús A, Ferrer M. , et al. Community-acquired pneumonia due to multidrug- and non-multidrug-resistant Pseudomonas aeruginosa . Chest 2016; 150 (02) 415-425
  • 182 Yayan J, Ghebremedhin B, Rasche K. Antibiotic resistance of Pseudomonas aeruginosa in pneumonia at a Single University Hospital Center in Germany over a 10-year period. PLoS One 2015; 10 (10) e0139836
  • 183 Prina E, Ranzani OT, Polverino E. , et al. Risk factors associated with potentially antibiotic-resistant pathogens in community-acquired pneumonia. Ann Am Thorac Soc 2015; 12 (02) 153-160
  • 184 Sibila O, Laserna E, Maselli DJ. , et al. Risk factors and antibiotic therapy in P. aeruginosa community-acquired pneumonia. Respirology 2015; 20 (04) 660-666
  • 185 Shindo Y, Ito R, Kobayashi D. , et al. Risk factors for drug-resistant pathogens in community-acquired and healthcare-associated pneumonia. Am J Respir Crit Care Med 2013; 188 (08) 985-995
  • 186 Fine MJ, Smith MA, Carson CA. , et al. Prognosis and outcomes of patients with community-acquired pneumonia. A meta-analysis. JAMA 1996; 275 (02) 134-141
  • 187 Hatchette TF, Gupta R, Marrie TJ. Pseudomonas aeruginosa community-acquired pneumonia in previously healthy adults: case report and review of the literature. Clin Infect Dis 2000; 31 (06) 1349-1356
  • 188 Talon D, Mulin B, Rouget C, Bailly P, Thouverez M, Viel JF. Risks and routes for ventilator-associated pneumonia with Pseudomonas aeruginosa . Am J Respir Crit Care Med 1998; 157 (3 Pt 1): 978-984
  • 189 Sands KM, Wilson MJ, Lewis MA. , et al. Respiratory pathogen colonization of dental plaque, the lower airways, and endotracheal tube biofilms during mechanical ventilation. J Crit Care 2017; 37: 30-37
  • 190 Murphy TF, Brauer AL, Eschberger K. , et al. Pseudomonas aeruginosa in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2008; 177 (08) 853-860
  • 191 Zhuo H, Yang K, Lynch SV. , et al. Increased mortality of ventilated patients with endotracheal Pseudomonas aeruginosa without clinical signs of infection. Crit Care Med 2008; 36 (09) 2495-2503
  • 192 Schechner V, Gottesman T, Schwartz O. , et al. Pseudomonas aeruginosa bacteremia upon hospital admission: risk factors for mortality and influence of inadequate empirical antimicrobial therapy. Diagn Microbiol Infect Dis 2011; 71 (01) 38-45
  • 193 Marra AR, Bar K, Bearman GM, Wenzel RP, Edmond MB. Systemic inflammatory response syndrome in adult patients with nosocomial bloodstream infection due to Pseudomonas aeruginosa . J Infect 2006; 53 (01) 30-35
  • 194 Kang CI, Kim SH, Kim HB. , et al. Pseudomonas aeruginosa bacteremia: risk factors for mortality and influence of delayed receipt of effective antimicrobial therapy on clinical outcome. Clin Infect Dis 2003; 37 (06) 745-751
  • 195 Dantas RC, Ferreira ML, Gontijo-Filho PP, Ribas RM. Pseudomonas aeruginosa bacteraemia: independent risk factors for mortality and impact of resistance on outcome. J Med Microbiol 2014; 63 (Pt 12): 1679-1687
  • 196 Livermore DM. Multiple mechanisms of antimicrobial resistance in Pseudomonas aeruginosa: our worst nightmare?. Clin Infect Dis 2002; 34 (05) 634-640
  • 197 Castanheira M, Mills JC, Farrell DJ, Jones RN. Mutation-driven β-lactam resistance mechanisms among contemporary ceftazidime-nonsusceptible Pseudomonas aeruginosa isolates from U.S. hospitals. Antimicrob Agents Chemother 2014; 58 (11) 6844-6850
  • 198 Magiorakos AP, Srinivasan A, Carey RB. , et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 2012; 18 (03) 268-281
  • 199 Willmann M, Bezdan D, Zapata L. , et al. Analysis of a long-term outbreak of XDR Pseudomonas aeruginosa: a molecular epidemiological study. J Antimicrob Chemother 2015; 70 (05) 1322-1330
  • 200 Edelstein MV, Skleenova EN, Shevchenko OV. , et al. Spread of extensively resistant VIM-2-positive ST235 Pseudomonas aeruginosa in Belarus, Kazakhstan, and Russia: a longitudinal epidemiological and clinical study. Lancet Infect Dis 2013; 13 (10) 867-876
  • 201 Viedma E, Juan C, Villa J. , et al. VIM-2-producing multidrug-resistant Pseudomonas aeruginosa ST175 clone, Spain. Emerg Infect Dis 2012; 18 (08) 1235-1241
  • 202 García-Castillo M, Del Campo R, Morosini MI. , et al. Wide dispersion of ST175 clone despite high genetic diversity of carbapenem-nonsusceptible Pseudomonas aeruginosa clinical strains in 16 Spanish hospitals. J Clin Microbiol 2011; 49 (08) 2905-2910
  • 203 Cholley P, Thouverez M, Hocquet D, van der Mee-Marquet N, Talon D, Bertrand X. Most multidrug-resistant Pseudomonas aeruginosa isolates from hospitals in eastern France belong to a few clonal types. J Clin Microbiol 2011; 49 (07) 2578-2583
  • 204 Yoo JS, Yang JW, Kim HM. , et al. Dissemination of genetically related IMP-6-producing multidrug-resistant Pseudomonas aeruginosa ST235 in South Korea. Int J Antimicrob Agents 2012; 39 (04) 300-304
  • 205 Cabot G, Zamorano L, Moyà B. , et al. Evolution of Pseudomonas aeruginosa antimicrobial resistance and fitness under low and high mutation rates. Antimicrob Agents Chemother 2016; 60 (03) 1767-1778
  • 206 Cheng K, Smyth RL, Govan JR. , et al. Spread of beta-lactam-resistant Pseudomonas aeruginosa in a cystic fibrosis clinic. Lancet 1996; 348 (9028): 639-642
  • 207 Scott FW, Pitt TL. Identification and characterization of transmissible Pseudomonas aeruginosa strains in cystic fibrosis patients in England and Wales. J Med Microbiol 2004; 53 (Pt 7): 609-615
  • 208 Aaron SD, Vandemheen KL, Ramotar K. , et al. Infection with transmissible strains of Pseudomonas aeruginosa and clinical outcomes in adults with cystic fibrosis. JAMA 2010; 304 (19) 2145-2153
  • 209 López-Causapé C, Rojo-Molinero E, Mulet X. , et al. Clonal dissemination, emergence of mutator lineages and antibiotic resistance evolution in Pseudomonas aeruginosa cystic fibrosis chronic lung infection. PLoS One 2013; 8 (08) e71001
  • 210 López-Dupla M, Martínez JA, Vidal F. , et al. Previous ciprofloxacin exposure is associated with resistance to beta-lactam antibiotics in subsequent Pseudomonas aeruginosa bacteremic isolates. Am J Infect Control 2009; 37 (09) 753-758
  • 211 Barron MA, Richardson K, Jeffres M, McCollister B. Risk factors and influence of carbapenem exposure on the development of carbapenem resistant Pseudomonas aeruginosa bloodstream infections and infections at sterile sites. Springerplus 2016; 5 (01) 755
  • 212 Apisarnthanarak A, Jitpokasem S, Mundy LM. Associations between carbapenem use, carbapenem-resistant Pseudomonas aeruginosa, and carbapenem-resistant Acinetobacter baumannii . Infect Control Hosp Epidemiol 2013; 34 (11) 1235-1237
  • 213 Souli M, Galani I, Giamarellou H. Emergence of extensively drug-resistant and pandrug-resistant gram-negative bacilli in Europe. Euro Surveill 2008; 13 (47) 13
  • 214 Sader HS, Farrell DJ, Flamm RK, Jones RN. Antimicrobial susceptibility of gram-negative organisms isolated from patients hospitalized in intensive care units in United States and European hospitals (2009-2011). Diagn Microbiol Infect Dis 2014; 78 (04) 443-448
  • 215 Rosenthal VD, Maki DG, Mehta A. , et al; International Nosocomial Infection Control Consortium Members. International Nosocomial Infection Control Consortium report, data summary for 2002-2007, issued January 2008. Am J Infect Control 2008; 36 (09) 627-637
  • 216 Rosenthal VD, Bijie H, Maki DG. , et al; INICC members. International Nosocomial Infection Control Consortium (INICC) report, data summary of 36 countries, for 2004-2009. Am J Infect Control 2012; 40 (05) 396-407
  • 217 Gill JS, Arora S, Khanna SP, Kumar KH. Prevalence of multidrug-resistant, extensively drug-resistant, and pandrug-resistant Pseudomonas aeruginosa from a tertiary level intensive care unit. J Glob Infect Dis 2016; 8 (04) 155-159
  • 218 von Wintersdorff CJ, Penders J, Stobberingh EE. , et al. High rates of antimicrobial drug resistance gene acquisition after international travel, The Netherlands. Emerg Infect Dis 2014; 20 (04) 649-657
  • 219 Cabot G, Bruchmann S, Mulet X. , et al. Pseudomonas aeruginosa ceftolozane-tazobactam resistance development requires multiple mutations leading to overexpression and structural modification of AmpC. Antimicrob Agents Chemother 2014; 58 (06) 3091-3099
  • 220 Fournier D, Richardot C, Müller E. , et al. Complexity of resistance mechanisms to imipenem in intensive care unit strains of Pseudomonas aeruginosa . J Antimicrob Chemother 2013; 68 (08) 1772-1780
  • 221 Lister PD, Wolter DJ, Hanson ND. Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin Microbiol Rev 2009; 22 (04) 582-610
  • 222 Rodríguez-Martínez JM, Poirel L, Nordmann P. Molecular epidemiology and mechanisms of carbapenem resistance in Pseudomonas aeruginosa . Antimicrob Agents Chemother 2009; 53 (11) 4783-4788
  • 223 Castanheira M, Deshpande LM, Costello A, Davies TA, Jones RN. Epidemiology and carbapenem resistance mechanisms of carbapenem-non-susceptible Pseudomonas aeruginosa collected during 2009-11 in 14 European and Mediterranean countries. J Antimicrob Chemother 2014; 69 (07) 1804-1814
  • 224 Woodford N, Zhang J, Kaufmann ME. , et al. Detection of Pseudomonas aeruginosa isolates producing VEB-type extended-spectrum beta-lactamases in the United Kingdom. J Antimicrob Chemother 2008; 62 (06) 1265-1268
  • 225 Escandón-Vargas K, Reyes S, Gutiérrez S, Villegas MV. The epidemiology of carbapenemases in Latin America and the Caribbean. Expert Rev Anti Infect Ther 2017; 15 (03) 277-297
  • 226 Bush K, Jacoby GA. Updated functional classification of beta-lactamases. Antimicrob Agents Chemother 2010; 54 (03) 969-976
  • 227 Mehrad B, Clark NM, Zhanel GG, Lynch III JP. Antimicrobial resistance in hospital-acquired gram-negative bacterial infections. Chest 2015; 147 (05) 1413-1421
  • 228 Girlich D, Naas T, Nordmann P. Biochemical characterization of the naturally occurring oxacillinase OXA-50 of Pseudomonas aeruginosa . Antimicrob Agents Chemother 2004; 48 (06) 2043-2048
  • 229 Fajardo A, Hernando-Amado S, Oliver A, Ball G, Filloux A, Martinez JL. Characterization of a novel Zn2+-dependent intrinsic imipenemase from Pseudomonas aeruginosa . J Antimicrob Chemother 2014; 69 (11) 2972-2978
  • 230 Lynch III JP, Clark NM, Zhanel GG. Evolution of antimicrobial resistance among Enterobacteriaceae (focus on extended spectrum β-lactamases and carbapenemases). Expert Opin Pharmacother 2013; 14 (02) 199-210
  • 231 Nordmann P, Ronco E, Naas T, Duport C, Michel-Briand Y, Labia R. Characterization of a novel extended-spectrum beta-lactamase from Pseudomonas aeruginosa . Antimicrob Agents Chemother 1993; 37 (05) 962-969
  • 232 Kolayli F, Gacar G, Karadenizli A, Sanic A, Vahaboglu H. ; Study Group. PER-1 is still widespread in Turkish hospitals among Pseudomonas aeruginosa and Acinetobacter spp. FEMS Microbiol Lett 2005; 249 (02) 241-245
  • 233 Claeys G, Verschraegen G, de Baere T, Vaneechoutte M. PER-1 beta-lactamase-producing Pseudomonas aeruginosa in an intensive care unit. J Antimicrob Chemother 2000; 45 (06) 924-925
  • 234 Luzzaro F, Mantengoli E, Perilli M. , et al. Dynamics of a nosocomial outbreak of multidrug-resistant Pseudomonas aeruginosa producing the PER-1 extended-spectrum beta-lactamase. J Clin Microbiol 2001; 39 (05) 1865-1870
  • 235 Empel J, Filczak K, Mrówka A, Hryniewicz W, Livermore DM, Gniadkowski M. Outbreak of Pseudomonas aeruginosa infections with PER-1 extended-spectrum beta-lactamase in Warsaw, Poland: further evidence for an international clonal complex. J Clin Microbiol 2007; 45 (09) 2829-2834
  • 236 Libisch B, Poirel L, Lepsanovic Z. , et al. Identification of PER-1 extended-spectrum beta-lactamase producing Pseudomonas aeruginosa clinical isolates of the international clonal complex CC11 from Hungary and Serbia. FEMS Immunol Med Microbiol 2008; 54 (03) 330-338
  • 237 Yamano Y, Nishikawa T, Fujimura T, Yutsudou T, Tsuji M, Miwa H. Occurrence of PER-1 producing clinical isolates of Pseudomonas aeruginosa in Japan and their susceptibility to doripenem. J Antibiot (Tokyo) 2006; 59 (12) 791-796
  • 238 Ktari S, Mnif B, Znazen A. , et al. Diversity of β-lactamases in Pseudomonas aeruginosa isolates producing metallo-β-lactamase in two Tunisian hospitals. Microb Drug Resist 2011; 17 (01) 25-30
  • 239 Qing Y, Cao KY, Fang ZL. , et al. Outbreak of PER-1 and diversity of β-lactamases among ceftazidime-resistant Pseudomonas aeruginosa clinical isolates. J Med Microbiol 2014; 63 (Pt 3): 386-392
  • 240 Naas T, Poirel L, Karim A, Nordmann P. Molecular characterization of In50, a class 1 integron encoding the gene for the extended-spectrum beta-lactamase VEB-1 in Pseudomonas aeruginosa . FEMS Microbiol Lett 1999; 176 (02) 411-419
  • 241 Girlich D, Naas T, Leelaporn A, Poirel L, Fennewald M, Nordmann P. Nosocomial spread of the integron-located veb-1-like cassette encoding an extended-pectrum beta-lactamase in Pseudomonas aeruginosa in Thailand. Clin Infect Dis 2002; 34 (05) 603-611
  • 242 Poirel L, Rotimi VO, Mokaddas EM, Karim A, Nordmann P. VEB-1-like extended-spectrum beta-lactamases in Pseudomonas aeruginosa, Kuwait. Emerg Infect Dis 2001; 7 (03) 468-470
  • 243 Aubert D, Girlich D, Naas T, Nagarajan S, Nordmann P. Functional and structural characterization of the genetic environment of an extended-spectrum beta-lactamase blaVEB gene from a Pseudomonas aeruginosa isolate obtained in India. Antimicrob Agents Chemother 2004; 48 (09) 3284-3290
  • 244 Jiang X, Zhang Z, Li M, Zhou D, Ruan F, Lu Y. Detection of extended-spectrum beta-lactamases in clinical isolates of Pseudomonas aeruginosa . Antimicrob Agents Chemother 2006; 50 (09) 2990-2995
  • 245 Strateva T, Ouzounova-Raykova V, Markova B, Todorova A, Marteva-Proevska Y, Mitov I. Widespread detection of VEB-1-type extended-spectrum beta-lactamases among nosocomial ceftazidime-resistant Pseudomonas aeruginosa isolates in Sofia, Bulgaria. J Chemother 2007; 19 (02) 140-145
  • 246 Hansen F, Johansen HK, Østergaard C. , et al. Characterization of carbapenem nonsusceptible Pseudomonas aeruginosa in Denmark: a nationwide, prospective study. Microb Drug Resist 2014; 20 (01) 22-29
  • 247 Poirel L, Weldhagen GF, De Champs C, Nordmann P. A nosocomial outbreak of Pseudomonas aeruginosa isolates expressing the extended-spectrum beta-lactamase GES-2 in South Africa. J Antimicrob Chemother 2002; 49 (03) 561-565
  • 248 Dubois V, Poirel L, Marie C, Arpin C, Nordmann P, Quentin C. Molecular characterization of a novel class 1 integron containing bla(GES-1) and a fused product of aac3-Ib/aac6′-Ib' gene cassettes in Pseudomonas aeruginosa . Antimicrob Agents Chemother 2002; 46 (03) 638-645
  • 249 Mavroidi A, Tzelepi E, Tsakris A, Miriagou V, Sofianou D, Tzouvelekis LS. An integron-associated beta-lactamase (IBC-2) from Pseudomonas aeruginosa is a variant of the extended-spectrum beta-lactamase IBC-1. J Antimicrob Chemother 2001; 48 (05) 627-630
  • 250 Castanheira M, Mendes RE, Walsh TR, Gales AC, Jones RN. Emergence of the extended-spectrum beta-lactamase GES-1 in a Pseudomonas aeruginosa strain from Brazil: report from the SENTRY antimicrobial surveillance program. Antimicrob Agents Chemother 2004; 48 (06) 2344-2345
  • 251 Pasteran F, Faccone D, Petroni A. , et al. Novel variant (bla(VIM-11)) of the metallo-beta-lactamase bla(VIM) family in a GES-1 extended-spectrum-beta-lactamase-producing Pseudomonas aeruginosa clinical isolate in Argentina. Antimicrob Agents Chemother 2005; 49 (01) 474-475
  • 252 Castanheira M, Toleman MA, Jones RN, Schmidt FJ, Walsh TR. Molecular characterization of a beta-lactamase gene, blaGIM-1, encoding a new subclass of metallo-beta-lactamase. Antimicrob Agents Chemother 2004; 48 (12) 4654-4661
  • 253 Wang C, Cai P, Chang D, Mi Z. A Pseudomonas aeruginosa isolate producing the GES-5 extended-spectrum beta-lactamase. J Antimicrob Chemother 2006; 57 (06) 1261-1262
  • 254 Labuschagne CdeJ, Weldhagen GF, Ehlers MM, Dove MG. Emergence of class 1 integron-associated GES-5 and GES-5-like extended-spectrum beta-lactamases in clinical isolates of Pseudomonas aeruginosa in South Africa. Int J Antimicrob Agents 2008; 31 (06) 527-530
  • 255 Iraz M, Duzgun AO, Cicek AC. , et al. Characterization of novel VIM carbapenemase, VIM-38, and first detection of GES-5 carbapenem-hydrolyzing β-lactamases in Pseudomonas aeruginosa in Turkey. Diagn Microbiol Infect Dis 2014; 78 (03) 292-294
  • 256 Malkoçoğlu G, Aktaş E, Bayraktar B, Otlu B, Bulut ME. VIM-1, VIM-2, and GES-5 carbapenemases among Pseudomonas aeruginosa isolates at a tertiary hospital in Istanbul, Turkey. Microb Drug Resist 2016
  • 257 Garza-Ramos U, Barrios H, Reyna-Flores F. , et al. Widespread of ESBL- and carbapenemase GES-type genes on carbapenem-resistant Pseudomonas aeruginosa clinical isolates: a multicenter study in Mexican hospitals. Diagn Microbiol Infect Dis 2015; 81 (02) 135-137
  • 258 Hong JS, Yoon EJ, Lee H, Jeong SH, Lee K. Clonal dissemination of Pseudomonas aeruginosa sequence type 235 isolates carrying blaIMP-6 and emergence of blaGES-24 and blaIMP-10 on novel genomic islands PAGI-15 and -16 in South Korea. Antimicrob Agents Chemother 2016; 60 (12) 7216-7223
  • 259 Kanayama A, Kawahara R, Yamagishi T. , et al. Successful control of an outbreak of GES-5 extended-spectrum β-lactamase-producing Pseudomonas aeruginosa in a long-term care facility in Japan. J Hosp Infect 2016; 93 (01) 35-41
  • 260 Villegas MV, Lolans K, Correa A, Kattan JN, Lopez JA, Quinn JP. ; Colombian Nosocomial Resistance Study Group. First identification of Pseudomonas aeruginosa isolates producing a KPC-type carbapenem-hydrolyzing beta-lactamase. Antimicrob Agents Chemother 2007; 51 (04) 1553-1555
  • 261 Wolter DJ, Khalaf N, Robledo IE. , et al. Surveillance of carbapenem-resistant Pseudomonas aeruginosa isolates from Puerto Rican Medical Center Hospitals: dissemination of KPC and IMP-18 beta-lactamases. Antimicrob Agents Chemother 2009; 53 (04) 1660-1664
  • 262 Akpaka PE, Swanston WH, Ihemere HN. , et al. Emergence of KPC-producing Pseudomonas aeruginosa in Trinidad and Tobago. J Clin Microbiol 2009; 47 (08) 2670-2671
  • 263 Cuzon G, Naas T, Villegas MV, Correa A, Quinn JP, Nordmann P. Wide dissemination of Pseudomonas aeruginosa producing beta-lactamase blaKPC-2 gene in Colombia. Antimicrob Agents Chemother 2011; 55 (11) 5350-5353
  • 264 García Ramírez D, Nicola F, Zarate S, Relloso S, Smayevsky J, Arduino S. Emergence of Pseudomonas aeruginosa with KPC-type carbapenemase in a teaching hospital: an 8-year study. J Med Microbiol 2013; 62 (Pt 10): 1565-1570
  • 265 Ge C, Wei Z, Jiang Y, Shen P, Yu Y, Li L. Identification of KPC-2-producing Pseudomonas aeruginosa isolates in China. J Antimicrob Chemother 2011; 66 (05) 1184-1186
  • 266 Correa A, Montealegre MC, Mojica MF. , et al. First report of a Pseudomonas aeruginosa isolate coharboring KPC and VIM carbapenemases. Antimicrob Agents Chemother 2012; 56 (10) 5422-5423
  • 267 Martínez T, Vázquez GJ, Aquino EE, Ramírez-Ronda R, Robledo IE. First report of a Pseudomonas aeruginosa clinical isolate co-harbouring KPC-2 and IMP-18 carbapenemases. Int J Antimicrob Agents 2012; 39 (06) 542-543
  • 268 Vanegas JM, Cienfuegos AV, Ocampo AM. , et al. Similar frequencies of Pseudomonas aeruginosa isolates producing KPC and VIM carbapenemases in diverse genetic clones at tertiary-care hospitals in Medellín, Colombia. J Clin Microbiol 2014; 52 (11) 3978-3986
  • 269 Tian GB, Adams-Haduch JM, Bogdanovich T, Wang HN, Doi Y. PME-1, an extended-spectrum β-lactamase identified in Pseudomonas aeruginosa . Antimicrob Agents Chemother 2011; 55 (06) 2710-2713
  • 270 Zowawi HM, Ibrahim E, Syrmis MW, Wailan AM, AbdulWahab A, Paterson DL. PME-1-producing Pseudomonas aeruginosa in Qatar. Antimicrob Agents Chemother 2015; 59 (06) 3692-3693
  • 271 Hong DJ, Bae IK, Jang IH, Jeong SH, Kang HK, Lee K. Epidemiology and characteristics of metallo-β-lactamase-producing Pseudomonas aeruginosa . Infect Chemother 2015; 47 (02) 81-97
  • 272 Correa A, Del Campo R, Perenguez M. , et al. Dissemination of high-risk clones of extensively drug-resistant Pseudomonas aeruginosa in Colombia. Antimicrob Agents Chemother 2015; 59 (04) 2421-2425
  • 273 Mikucionyte G, Zamorano L, Vitkauskiene A. , et al. Nosocomial dissemination of VIM-2-producing ST235 Pseudomonas aeruginosa in Lithuania. Eur J Clin Microbiol Infect Dis 2016; 35 (02) 195-200
  • 274 Wright LL, Turton JF, Livermore DM, Hopkins KL, Woodford N. Dominance of international ‘high-risk clones’ among metallo-β-lactamase-producing Pseudomonas aeruginosa in the UK. J Antimicrob Chemother 2015; 70 (01) 103-110
  • 275 Watanabe M, Iyobe S, Inoue M, Mitsuhashi S. Transferable imipenem resistance in Pseudomonas aeruginosa . Antimicrob Agents Chemother 1991; 35 (01) 147-151
  • 276 Tada T, Miyoshi-Akiyama T, Shimada K, Shimojima M, Kirikae T. IMP-43 and IMP-44 metallo-β-lactamases with increased carbapenemase activities in multidrug-resistant Pseudomonas aeruginosa . Antimicrob Agents Chemother 2013; 57 (09) 4427-4432
  • 277 Lauretti L, Riccio ML, Mazzariol A. , et al. Cloning and characterization of blaVIM, a new integron-borne metallo-beta-lactamase gene from a Pseudomonas aeruginosa clinical isolate. Antimicrob Agents Chemother 1999; 43 (07) 1584-1590
  • 278 Cornaglia G, Mazzariol A, Lauretti L, Rossolini GM, Fontana R. Hospital outbreak of carbapenem-resistant Pseudomonas aeruginosa producing VIM-1, a novel transferable metallo-beta-lactamase. Clin Infect Dis 2000; 31 (05) 1119-1125
  • 279 Poirel L, Naas T, Nicolas D. , et al. Characterization of VIM-2, a carbapenem-hydrolyzing metallo-beta-lactamase and its plasmid- and integron-borne gene from a Pseudomonas aeruginosa clinical isolate in France. Antimicrob Agents Chemother 2000; 44 (04) 891-897
  • 280 Cornaglia G, Giamarellou H, Rossolini GM. Metallo-β-lactamases: a last frontier for β-lactams?. Lancet Infect Dis 2011; 11 (05) 381-393
  • 281 Wendel AF, Brodner AH, Wydra S. , et al. Genetic characterization and emergence of the metallo-β-lactamase GIM-1 in Pseudomonas spp. and Enterobacteriaceae during a long-term outbreak. Antimicrob Agents Chemother 2013; 57 (10) 5162-5165
  • 282 Wendel AF, Kolbe-Busch S, Ressina S. , et al. Detection and termination of an extended low-frequency hospital outbreak of GIM-1-producing Pseudomonas aeruginosa ST111 in Germany. Am J Infect Control 2015; 43 (06) 635-639
  • 283 al Naiemi N, Duim B, Bart A. A CTX-M extended-spectrum beta-lactamase in Pseudomonas aeruginosa and Stenotrophomonas maltophilia . J Med Microbiol 2006; 55 (Pt 11): 1607-1608
  • 284 Celenza G, Pellegrini C, Caccamo M, Segatore B, Amicosante G, Perilli M. Spread of bla(CTX-M-type) and bla(PER-2) beta-lactamase genes in clinical isolates from Bolivian hospitals. J Antimicrob Chemother 2006; 57 (05) 975-978
  • 285 Picão RC, Poirel L, Gales AC, Nordmann P. Further identification of CTX-M-2 extended-spectrum beta-lactamase in Pseudomonas aeruginosa . Antimicrob Agents Chemother 2009; 53 (05) 2225-2226
  • 286 Toleman MA, Simm AM, Murphy TA. , et al. Molecular characterization of SPM-1, a novel metallo-beta-lactamase isolated in Latin America: report from the SENTRY antimicrobial surveillance programme. J Antimicrob Chemother 2002; 50 (05) 673-679
  • 287 Zavascki AP, Gaspareto PB, Martins AF, Gonçalves AL, Barth AL. Outbreak of carbapenem-resistant Pseudomonas aeruginosa producing SPM-1 metallo-beta-lactamase in a teaching hospital in southern Brazil. J Antimicrob Chemother 2005; 56 (06) 1148-1151
  • 288 Furtado GH, Gales AC, Perdiz LB, Santos AF, Medeiros EA. Prevalence and clinical outcomes of episodes of ventilator-associated pneumonia caused by SPM-1-producing and non-producing imipenem-resistant Pseudomonas aeruginosa . Rev Soc Bras Med Trop 2011; 44 (05) 604-606
  • 289 Wirth FW, Picoli SU, Cantarelli VV. , et al. Metallo-beta-lactamase-producing Pseudomonas aeruginosa in two hospitals from southern Brazil. Braz J Infect Dis 2009; 13 (03) 170-172
  • 290 Scheffer MC, Gales AC, Barth AL, Carmo Filho JR, Dalla-Costa LM. Carbapenem-resistant Pseudomonas aeruginosa: clonal spread in southern Brazil and in the state of Goiás. Braz J Infect Dis 2010; 14 (05) 508-509
  • 291 Kalluf KO, Arend LN, Wuicik TE, Pilonetto M, Tuon FF. Molecular epidemiology of SPM-1-producing Pseudomonas aeruginosa by rep-PCR in hospitals in Parana, Brazil. Infect Genet Evol 2017; 49: 130-133
  • 292 Salabi AE, Toleman MA, Weeks J, Bruderer T, Frei R, Walsh TR. First report of the metallo-beta-lactamase SPM-1 in Europe. Antimicrob Agents Chemother 2010; 54 (01) 582
  • 293 Hopkins KL, Meunier D, Findlay J. , et al. SPM-1 metallo-β-lactamase-producing Pseudomonas aeruginosa ST277 in the UK. J Med Microbiol 2016; 65 (07) 696-697
  • 294 Jones RN, Biedenbach DJ, Sader HS, Fritsche TR, Toleman MA, Walsh TR. Emerging epidemic of metallo-beta-lactamase-mediated resistances. Diagn Microbiol Infect Dis 2005; 51 (02) 77-84
  • 295 Picão RC, Poirel L, Gales AC, Nordmann P. Diversity of beta-lactamases produced by ceftazidime-resistant Pseudomonas aeruginosa isolates causing bloodstream infections in Brazil. Antimicrob Agents Chemother 2009; 53 (09) 3908-3913
  • 296 Andrade LN, Woodford N, Darini AL. International gatherings and potential for global dissemination of São Paulo metallo-β-lactamase (SPM) from Brazil. Int J Antimicrob Agents 2014; 43 (02) 196-197
  • 297 Poirel L, Brinas L, Verlinde A, Ide L, Nordmann P. BEL-1, a novel clavulanic acid-inhibited extended-spectrum beta-lactamase, and the class 1 integron In120 in Pseudomonas aeruginosa . Antimicrob Agents Chemother 2005; 49 (09) 3743-3748
  • 298 Poirel L, Docquier JD, De Luca F. , et al. BEL-2, an extended-spectrum beta-lactamase with increased activity toward expanded-spectrum cephalosporins in Pseudomonas aeruginosa . Antimicrob Agents Chemother 2010; 54 (01) 533-535
  • 299 Glupczynski Y, Bogaerts P, Deplano A. , et al. Detection and characterization of class A extended-spectrum-beta-lactamase-producing Pseudomonas aeruginosa isolates in Belgian hospitals. J Antimicrob Chemother 2010; 65 (05) 866-871
  • 300 Pollini S, Maradei S, Pecile P. , et al. FIM-1, a new acquired metallo-β-lactamase from a Pseudomonas aeruginosa clinical isolate from Italy. Antimicrob Agents Chemother 2013; 57 (01) 410-416
  • 301 Yong D, Toleman MA, Giske CG. , et al. Characterization of a new metallo-beta-lactamase gene, bla(NDM-1), and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob Agents Chemother 2009; 53 (12) 5046-5054
  • 302 Jovcic B, Lepsanovic Z, Suljagic V. , et al. Emergence of NDM-1 metallo-β-lactamase in Pseudomonas aeruginosa clinical isolates from Serbia. Antimicrob Agents Chemother 2011; 55 (08) 3929-3931
  • 303 Flateau C, Janvier F, Delacour H. , et al. Recurrent pyelonephritis due to NDM-1 metallo-beta-lactamase producing Pseudomonas aeruginosa in a patient returning from Serbia, France, 2012. Euro Surveill 2012; 17 (45) 17
  • 304 Khajuria A, Praharaj AK, Kumar M, Grover N. Emergence of NDM - 1 in the clinical isolates of Pseudomonas aeruginosa in India. J Clin Diagn Res 2013; 7 (07) 1328-1331
  • 305 Carattoli A, Fortini D, Galetti R. , et al. Isolation of NDM-1-producing Pseudomonas aeruginosa sequence type ST235 from a stem cell transplant patient in Italy, May 2013. Euro Surveill 2013; 18 (46) 18
  • 306 Zafer MM, Amin M, El Mahallawy H, Ashour MS, Al Agamy M. First report of NDM-1-producing Pseudomonas aeruginosa in Egypt. Int J Infect Dis 2014; 29: 80-81
  • 307 Kulkova N, Babalova M, Sokolova J, Krcmery V. First report of New Delhi metallo-β-lactamase-1-producing strains in Slovakia. Microb Drug Resist 2015; 21 (01) 117-120
  • 308 Philippon LN, Naas T, Bouthors AT, Barakett V, Nordmann P. OXA-18, a class D clavulanic acid-inhibited extended-spectrum beta-lactamase from Pseudomonas aeruginosa . Antimicrob Agents Chemother 1997; 41 (10) 2188-2195
  • 309 Sevillano E, Gallego L, García-Lobo JM. First detection of the OXA-40 carbapenemase in P. aeruginosa isolates, located on a plasmid also found in A. baumannii . Pathol Biol (Paris) 2009; 57 (06) 493-495
  • 310 El Garch F, Bogaerts P, Bebrone C, Galleni M, Glupczynski Y. OXA-198, an acquired carbapenem-hydrolyzing class D beta-lactamase from Pseudomonas aeruginosa . Antimicrob Agents Chemother 2011; 55 (10) 4828-4833
  • 311 Naas T, Philippon L, Poirel L, Ronco E, Nordmann P. An SHV-derived extended-spectrum beta-lactamase in Pseudomonas aeruginosa . Antimicrob Agents Chemother 1999; 43 (05) 1281-1284
  • 312 Chanawong A, M'Zali FH, Heritage J, Lulitanond A, Hawkey PM. SHV-12, SHV-5, SHV-2a and VEB-1 extended-spectrum beta-lactamases in gram-negative bacteria isolated in a university hospital in Thailand. J Antimicrob Chemother 2001; 48 (06) 839-852
  • 313 Mansour W, Dahmen S, Poirel L. , et al. Emergence of SHV-2a extended-spectrum beta-lactamases in clinical isolates of Pseudomonas aeruginosa in a university hospital in Tunisia. Microb Drug Resist 2009; 15 (04) 295-301
  • 314 Uemura S, Yokota S, Mizuno H. , et al. Acquisition of a transposon encoding extended-spectrum beta-lactamase SHV-12 by Pseudomonas aeruginosa isolates during the clinical course of a burn patient. Antimicrob Agents Chemother 2010; 54 (09) 3956-3959
  • 315 Poirel L, Lebessi E, Castro M, Fèvre C, Foustoukou M, Nordmann P. Nosocomial outbreak of extended-spectrum beta-lactamase SHV-5-producing isolates of Pseudomonas aeruginosa in Athens, Greece. Antimicrob Agents Chemother 2004; 48 (06) 2277-2279
  • 316 Yong D, Toleman MA, Bell J. , et al. Genetic and biochemical characterization of an acquired subgroup B3 metallo-β-lactamase gene, blaAIM-1, and its unique genetic context in Pseudomonas aeruginosa from Australia. Antimicrob Agents Chemother 2012; 56 (12) 6154-6159
  • 317 Mugnier P, Dubrous P, Casin I, Arlet G, Collatz E. A TEM-derived extended-spectrum beta-lactamase in Pseudomonas aeruginosa . Antimicrob Agents Chemother 1996; 40 (11) 2488-2493
  • 318 Marchandin H, Jean-Pierre H, De Champs C. , et al. Production of a TEM-24 plasmid-mediated extended-spectrum beta-lactamase by a clinical isolate of Pseudomonas aeruginosa . Antimicrob Agents Chemother 2000; 44 (01) 213-216
  • 319 Poirel L, Ronco E, Naas T, Nordmann P. Extended-spectrum β-lactamase TEM-4 in Pseudomonas aeruginosa . Clin Microbiol Infect 1999; 5 (10) 651-652
  • 320 Zilberberg MD, Shorr AF. Prevalence of multidrug-resistant Pseudomonas aeruginosa and carbapenem-resistant Enterobacteriaceae among specimens from hospitalized patients with pneumonia and bloodstream infections in the United States from 2000 to 2009. J Hosp Med 2013; 8 (10) 559-563
  • 321 Zhanel GG, DeCorby M, Adam H. , et al; Canadian Antimicrobial Resistance Alliance. Prevalence of antimicrobial-resistant pathogens in Canadian hospitals: results of the Canadian Ward Surveillance Study (CANWARD 2008). Antimicrob Agents Chemother 2010; 54 (11) 4684-4693
  • 322 Labarca JA, Salles MJ, Seas C, Guzmán-Blanco M. Carbapenem resistance in Pseudomonas aeruginosa and Acinetobacter baumannii in the nosocomial setting in Latin America. Crit Rev Microbiol 2016; 42 (02) 276-292
  • 323 Chastre J, Fagon JY. Ventilator-associated pneumonia. Am J Respir Crit Care Med 2002; 165 (07) 867-903
  • 324 Ruppé É, Woerther PL, Barbier F. Mechanisms of antimicrobial resistance in gram-negative bacilli. Ann Intensive Care 2015; 5 (01) 61
  • 325 Rello J, Mariscal D, March F. , et al. Recurrent Pseudomonas aeruginosa pneumonia in ventilated patients: relapse or reinfection?. Am J Respir Crit Care Med 1998; 157 (3 Pt 1): 912-916
  • 326 Carmeli Y, Troillet N, Eliopoulos GM, Samore MH. Emergence of antibiotic-resistant Pseudomonas aeruginosa: comparison of risks associated with different antipseudomonal agents. Antimicrob Agents Chemother 1999; 43 (06) 1379-1382
  • 327 Fink MP, Snydman DR, Niederman MS. , et al; The Severe Pneumonia Study Group. Treatment of severe pneumonia in hospitalized patients: results of a multicenter, randomized, double-blind trial comparing intravenous ciprofloxacin with imipenem-cilastatin. Antimicrob Agents Chemother 1994; 38 (03) 547-557
  • 328 El Amari EB, Chamot E, Auckenthaler R, Pechère JC, Van Delden C. Influence of previous exposure to antibiotic therapy on the susceptibility pattern of Pseudomonas aeruginosa bacteremic isolates. Clin Infect Dis 2001; 33 (11) 1859-1864
  • 329 Lodise Jr TP, Patel N, Kwa A. , et al. Predictors of 30-day mortality among patients with Pseudomonas aeruginosa bloodstream infections: impact of delayed appropriate antibiotic selection. Antimicrob Agents Chemother 2007; 51 (10) 3510-3515
  • 330 Vidal F, Mensa J, Almela M. , et al. Epidemiology and outcome of Pseudomonas aeruginosa bacteremia, with special emphasis on the influence of antibiotic treatment. Analysis of 189 episodes. Arch Intern Med 1996; 156 (18) 2121-2126
  • 331 Rhomberg PR, Jones RN. Summary trends for the Meropenem Yearly Susceptibility Test Information Collection Program: a 10-year experience in the United States (1999-2008). Diagn Microbiol Infect Dis 2009; 65 (04) 414-426
  • 332 Zhanel GG, Chung P, Adam H. , et al. Ceftolozane/tazobactam: a novel cephalosporin/β-lactamase inhibitor combination with activity against multidrug-resistant gram-negative bacilli. Drugs 2014; 74 (01) 31-51
  • 333 van Duin D, Bonomo RA. Ceftazidime/avibactam and ceftolozane/tazobactam: second-generation β-lactam/β-lactamase inhibitor combinations. Clin Infect Dis 2016; 63 (02) 234-241
  • 334 Zhanel GG, Lawson CD, Adam H. , et al. Ceftazidime-avibactam: a novel cephalosporin/β-lactamase inhibitor combination. Drugs 2013; 73 (02) 159-177
  • 335 Zasowski EJ, Rybak JM, Rybak MJ. The β-lactams strike back: ceftazidime-avibactam. Pharmacotherapy 2015; 35 (08) 755-770
  • 336 Flamm RK, Farrell DJ, Sader HS, Jones RN. Ceftazidime/avibactam activity tested against gram-negative bacteria isolated from bloodstream, pneumonia, intra-abdominal and urinary tract infections in US medical centres (2012). J Antimicrob Chemother 2014; 69 (06) 1589-1598
  • 337 Falcone M, Paterson D. Spotlight on ceftazidime/avibactam: a new option for MDR gram-negative infections. J Antimicrob Chemother 2016; 71 (10) 2713-2722
  • 338 Stone GG, Bradford PA, Newell P, Wardman A. In vitro activity of ceftazidime-avibactam against isolates in a phase 3 open-label clinical trial for complicated intra-abdominal and urinary tract infections caused by ceftazidime-nonsusceptible gram-negative pathogens. Antimicrob Agents Chemother 2017; 61 (02) pii : e01820-16
  • 339 Goodlet KJ, Nicolau DP, Nailor MD. Ceftolozane/tazobactam and ceftazidime/avibactam for the treatment of complicated intra-abdominal infections. Ther Clin Risk Manag 2016; 12: 1811-1826
  • 340 Miller B, Popejoy MW, Hershberger E, Steenbergen JN, Alverdy J. Characteristics and outcomes of complicated intra-abdominal infections involving Pseudomonas aeruginosa from a randomized, double-blind, phase 3 ceftolozane-tazobactam study. Antimicrob Agents Chemother 2016; 60 (07) 4387-4390
  • 341 Jones RN, Guzman-Blanco M, Gales AC. , et al. Susceptibility rates in Latin American nations: report from a regional resistance surveillance program (2011). Braz J Infect Dis 2013; 17 (06) 672-681
  • 342 Agnello M, Finkel SE, Wong-Beringer A. Fitness cost of fluoroquinolone resistance in clinical isolates of Pseudomonas aeruginosa differs by type III secretion genotype. Front Microbiol 2016; 7: 1591
  • 343 Bruchmann S, Dötsch A, Nouri B, Chaberny IF, Häussler S. Quantitative contributions of target alteration and decreased drug accumulation to Pseudomonas aeruginosa fluoroquinolone resistance. Antimicrob Agents Chemother 2013; 57 (03) 1361-1368
  • 344 Denton M, Kerr K, Mooney L. , et al. Transmission of colistin-resistant Pseudomonas aeruginosa between patients attending a pediatric cystic fibrosis center. Pediatr Pulmonol 2002; 34 (04) 257-261
  • 345 Lau CH, Fraud S, Jones M, Peterson SN, Poole K. Mutational activation of the AmgRS two-component system in aminoglycoside-resistant Pseudomonas aeruginosa . Antimicrob Agents Chemother 2013; 57 (05) 2243-2251
  • 346 Poole K. Pseudomonas aeruginosa: resistance to the max. Front Microbiol 2011; 2: 65
  • 347 El'Garch F, Jeannot K, Hocquet D, Llanes-Barakat C, Plésiat P. Cumulative effects of several nonenzymatic mechanisms on the resistance of Pseudomonas aeruginosa to aminoglycosides. Antimicrob Agents Chemother 2007; 51 (03) 1016-1021
  • 348 Lau CH, Hughes D, Poole K. MexY-promoted aminoglycoside resistance in Pseudomonas aeruginosa: involvement of a putative proximal binding pocket in aminoglycoside recognition. MBio 2014; 5 (02) e01068
  • 349 Lee JY, Na IY, Park YK, Ko KS. Genomic variations between colistin-susceptible and -resistant Pseudomonas aeruginosa clinical isolates and their effects on colistin resistance. J Antimicrob Chemother 2014; 69 (05) 1248-1256
  • 350 Lee JY, Song JH, Ko KS. Identification of nonclonal Pseudomonas aeruginosa isolates with reduced colistin susceptibility in Korea. Microb Drug Resist 2011; 17 (02) 299-304
  • 351 Landman D, Bratu S, Alam M, Quale J. Citywide emergence of Pseudomonas aeruginosa strains with reduced susceptibility to polymyxin B. J Antimicrob Chemother 2005; 55 (06) 954-957
  • 352 Olaitan AO, Morand S, Rolain JM. Mechanisms of polymyxin resistance: acquired and intrinsic resistance in bacteria. Front Microbiol 2014; 5: 643
  • 353 Gutu AD, Sgambati N, Strasbourger P. , et al. Polymyxin resistance of Pseudomonas aeruginosa phoQ mutants is dependent on additional two-component regulatory systems. Antimicrob Agents Chemother 2013; 57 (05) 2204-2215
  • 354 Muller C, Plésiat P, Jeannot K. A two-component regulatory system interconnects resistance to polymyxins, aminoglycosides, fluoroquinolones, and β-lactams in Pseudomonas aeruginosa . Antimicrob Agents Chemother 2011; 55 (03) 1211-1221
  • 355 Barrow K, Kwon DH. Alterations in two-component regulatory systems of phoPQ and pmrAB are associated with polymyxin B resistance in clinical isolates of Pseudomonas aeruginosa . Antimicrob Agents Chemother 2009; 53 (12) 5150-5154
  • 356 Viedma E, Juan C, Acosta J. , et al. Nosocomial spread of colistin-only-sensitive sequence type 235 Pseudomonas aeruginosa isolates producing the extended-spectrum beta-lactamases GES-1 and GES-5 in Spain. Antimicrob Agents Chemother 2009; 53 (11) 4930-4933
  • 357 Johansen HK, Moskowitz SM, Ciofu O, Pressler T, Høiby N. Spread of colistin resistant non-mucoid Pseudomonas aeruginosa among chronically infected Danish cystic fibrosis patients. J Cyst Fibros 2008; 7 (05) 391-397
  • 358 Bowers DR, Liew YX, Lye DC, Kwa AL, Hsu LY, Tam VH. Outcomes of appropriate empiric combination versus monotherapy for Pseudomonas aeruginosa bacteremia. Antimicrob Agents Chemother 2013; 57 (03) 1270-1274
  • 359 Peña C, Suarez C, Ocampo-Sosa A. , et al; Spanish Network for Research in Infectious Diseases (REIPI). Effect of adequate single-drug vs combination antimicrobial therapy on mortality in Pseudomonas aeruginosa bloodstream infections: a post Hoc analysis of a prospective cohort. Clin Infect Dis 2013; 57 (02) 208-216
  • 360 Hu Y, Li L, Li W. , et al. Combination antibiotic therapy versus monotherapy for Pseudomonas aeruginosa bacteraemia: a meta-analysis of retrospective and prospective studies. Int J Antimicrob Agents 2013; 42 (06) 492-496
  • 361 Siegman-Igra Y, Ravona R, Primerman H, Giladi M. Pseudomonas aeruginosa bacteremia: an analysis of 123 episodes, with particular emphasis on the effect of antibiotic therapy. Int J Infect Dis 1998; 2 (04) 211-215
  • 362 Chamot E, Boffi El Amari E, Rohner P, Van Delden C. Effectiveness of combination antimicrobial therapy for Pseudomonas aeruginosa bacteremia. Antimicrob Agents Chemother 2003; 47 (09) 2756-2764
  • 363 Drusano GL, Bonomo RA, Bahniuk N. , et al. Resistance emergence mechanism and mechanism of resistance suppression by tobramycin for cefepime for Pseudomonas aeruginosa . Antimicrob Agents Chemother 2012; 56 (01) 231-242
  • 364 Louie A, Grasso C, Bahniuk N. , et al. The combination of meropenem and levofloxacin is synergistic with respect to both Pseudomonas aeruginosa kill rate and resistance suppression. Antimicrob Agents Chemother 2010; 54 (06) 2646-2654
  • 365 Siqueira VL, Cardoso RF, Caleffi-Ferracioli KR. , et al. Structural changes and differentially expressed genes in Pseudomonas aeruginosa exposed to meropenem-ciprofloxacin combination. Antimicrob Agents Chemother 2014; 58 (07) 3957-3967
  • 366 Kumar A, Zarychanski R, Light B. , et al; Cooperative Antimicrobial Therapy of Septic Shock (CATSS) Database Research Group. Early combination antibiotic therapy yields improved survival compared with monotherapy in septic shock: a propensity-matched analysis. Crit Care Med 2010; 38 (09) 1773-1785
  • 367 Kumar A, Safdar N, Kethireddy S, Chateau D. A survival benefit of combination antibiotic therapy for serious infections associated with sepsis and septic shock is contingent only on the risk of death: a meta-analytic/meta-regression study. Crit Care Med 2010; 38 (08) 1651-1664
  • 368 Tamma PD, Cosgrove SE, Maragakis LL. Combination therapy for treatment of infections with gram-negative bacteria. Clin Microbiol Rev 2012; 25 (03) 450-470
  • 369 Chastre J, Wolff M, Fagon JY. , et al; PneumA Trial Group. Comparison of 8 vs 15 days of antibiotic therapy for ventilator-associated pneumonia in adults: a randomized trial. JAMA 2003; 290 (19) 2588-2598
  • 370 Hedrick TL, McElearney ST, Smith RL, Evans HL, Pruett TL, Sawyer RG. Duration of antibiotic therapy for ventilator-associated pneumonia caused by non-fermentative gram-negative bacilli. Surg Infect (Larchmt) 2007; 8 (06) 589-597
  • 371 Lodise Jr TP, Lomaestro B, Drusano GL. Piperacillin-tazobactam for Pseudomonas aeruginosa infection: clinical implications of an extended-infusion dosing strategy. Clin Infect Dis 2007; 44 (03) 357-363
  • 372 Yang H, Zhang C, Zhou Q, Wang Y, Chen L. Clinical outcomes with alternative dosing strategies for piperacillin/tazobactam: a systematic review and meta-analysis. PLoS One 2015; 10 (01) e0116769
  • 373 Cotrina-Luque J, Gil-Navarro MV, Acosta-García H. , et al. Continuous versus intermittent piperacillin/tazobactam infusion in infection due to or suspected pseudomonas aeruginosa . Int J Clin Pharm 2016; 38 (01) 70-79
  • 374 Elborn JS, Vataire AL, Fukushima A. , et al. Comparison of inhaled antibiotics for the treatment of chronic Pseudomonas aeruginosa lung infection in patients with cystic fibrosis: systematic literature review and network meta-analysis. Clin Ther 2016; 38 (10) 2204-2226
  • 375 Tay GT, Reid DW, Bell SC. Inhaled antibiotics in cystic fibrosis (CF) and non-CF bronchiectasis. Semin Respir Crit Care Med 2015; 36 (02) 267-286
  • 376 Quon BS, Goss CH, Ramsey BW. Inhaled antibiotics for lower airway infections. Ann Am Thorac Soc 2014; 11 (03) 425-434
  • 377 Hamer DH. Treatment of nosocomial pneumonia and tracheobronchitis caused by multidrug-resistant Pseudomonas aeruginosa with aerosolized colistin. Am J Respir Crit Care Med 2000; 162 (01) 328-330
  • 378 Falagas ME, Trigkidis KK, Vardakas KZ. Inhaled antibiotics beyond aminoglycosides, polymyxins and aztreonam: a systematic review. Int J Antimicrob Agents 2015; 45 (03) 221-233
  • 379 Kofteridis DP, Alexopoulou C, Valachis A. , et al. Aerosolized plus intravenous colistin versus intravenous colistin alone for the treatment of ventilator-associated pneumonia: a matched case-control study. Clin Infect Dis 2010; 51 (11) 1238-1244
  • 380 Michalopoulos A, Fotakis D, Virtzili S. , et al. Aerosolized colistin as adjunctive treatment of ventilator-associated pneumonia due to multidrug-resistant gram-negative bacteria: a prospective study. Respir Med 2008; 102 (03) 407-412
  • 381 Florescu DF, Qiu F, McCartan MA, Mindru C, Fey PD, Kalil AC. What is the efficacy and safety of colistin for the treatment of ventilator-associated pneumonia? A systematic review and meta-regression. Clin Infect Dis 2012; 54 (05) 670-680
  • 382 Lu Q, Luo R, Bodin L. , et al; Nebulized Antibiotics Study Group. Efficacy of high-dose nebulized colistin in ventilator-associated pneumonia caused by multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii . Anesthesiology 2012; 117 (06) 1335-1347
  • 383 Abdellatif S, Trifi A, Daly F, Mahjoub K, Nasri R, Ben Lakhal S. Efficacy and toxicity of aerosolised colistin in ventilator-associated pneumonia: a prospective, randomised trial. Ann Intensive Care 2016; 6 (01) 26
  • 384 Wunderink RG. Point: should inhaled antibiotic therapy be routinely used for the treatment of bacterial lower respiratory tract infections in the ICU setting? Yes. Chest 2017; 151 (04) 737-739
  • 385 Kollef MH. Counterpoint: should inhaled antibiotic therapy be routinely used for the treatment of bacterial lower respiratory tract infections in the ICU setting? No. Chest 2017; 151 (04) 740-743