Semin Neurol 2017; 37(02): 205-214
DOI: 10.1055/s-0037-1601893
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Current Practice and the Future of Deep Brain Stimulation Therapy in Parkinson's Disease

Leonardo Almeida
1   Department of Neurology, University of Florida, Center for Movement Disorders and Neurorestoration, Gainesville, Florida
,
Wissam Deeb
1   Department of Neurology, University of Florida, Center for Movement Disorders and Neurorestoration, Gainesville, Florida
,
Chauncey Spears
1   Department of Neurology, University of Florida, Center for Movement Disorders and Neurorestoration, Gainesville, Florida
,
Enrico Opri
2   Biomedical Engineering, University of Florida, Gainesville, Florida
,
Rene Molina
2   Biomedical Engineering, University of Florida, Gainesville, Florida
,
Daniel Martinez-Ramirez
1   Department of Neurology, University of Florida, Center for Movement Disorders and Neurorestoration, Gainesville, Florida
,
Aysegul Gunduz
2   Biomedical Engineering, University of Florida, Gainesville, Florida
,
Christopher W. Hess
1   Department of Neurology, University of Florida, Center for Movement Disorders and Neurorestoration, Gainesville, Florida
,
Michael S. Okun
1   Department of Neurology, University of Florida, Center for Movement Disorders and Neurorestoration, Gainesville, Florida
› Author Affiliations
Further Information

Publication History

Publication Date:
16 May 2017 (online)

Abstract

Deep brain stimulation (DBS) is an effective therapy for Parkinson's disease patients experiencing motor fluctuations, medication-resistant tremor, and/or dyskinesia. Currently, the subthalamic nucleus and the globus pallidus internus are the two most widely used targets, with individual advantages and disadvantages influencing patient selection. Potential DBS patients are selected using the few existing guidelines and the available DBS literature, and many centers employ an interdisciplinary team review of the individual's risk–benefit profile. Programmed settings vary based on institution- or physician-specific protocols designed to maximize benefits and limit adverse effects. Expectations should be realistic and clearly defined during the evaluation process, and each bothersome symptom should be addressed in the context of building the risk–benefit profile. Current DBS research is focused on improved symptom control, the development of newer technologies, and the improved efficiency of stimulation delivery. Techniques deliver stimulation in a more personalized way, and methods of adaptive DBS such as closed-loop approaches are already on the horizon.

 
  • References

  • 1 Martinez-Ramirez D, Hu W, Bona AR, Okun MS, Wagle Shukla A. Update on deep brain stimulation in Parkinson's disease. Transl Neurodegener 2015; 4: 12 . doi: 10.1186/s40035-015-0034-0
  • 2 Bronstein JM, Tagliati M, Alterman RL , et al. Deep brain stimulation for Parkinson disease: an expert consensus and review of key issues. Arch Neurol 2011; 68 (2) 165-171
  • 3 Gildenberg PL. Spiegel and Wycis - the early years. Stereotact Funct Neurosurg 2001; 77 (1-4): 11-16
  • 4 Hariz MI, Blomstedt P, Zrinzo L. Deep brain stimulation between 1947 and 1987: the untold story. Neurosurg Focus 2010; 29 (2) E1 . doi: 10.3171/2010.4.FOCUS10106
  • 5 Schwalb JM, Hamani C. The history and future of deep brain stimulation. Neurotherapeutics 2008; 5 (1) 3-13
  • 6 Miocinovic S, Somayajula S, Chitnis S, Vitek JL. History, applications, and mechanisms of deep brain stimulation. JAMA Neurol 2013; 70 (2) 163-171
  • 7 Benabid AL, Pollak P, Louveau A, Henry S, de Rougemont J. Combined (thalamotomy and stimulation) stereotactic surgery of the VIM thalamic nucleus for bilateral Parkinson disease. Appl Neurophysiol 1987; 50 (1-6): 344-346
  • 8 Benabid AL, Pollak P, Seigneuret E, Hoffmann D, Gay E, Perret J. Chronic VIM thalamic stimulation in Parkinson's disease, essential tremor and extra-pyramidal dyskinesias. Acta Neurochir Suppl (Wien) 1993; 58: 39-44
  • 9 Pötter-Nerger M, Volkmann J. Deep brain stimulation for gait and postural symptoms in Parkinson's disease. Mov Disord 2013; 28 (11) 1609-1615
  • 10 DeLong MR, Wichmann T. Basal ganglia circuits as targets for neuromodulation in Parkinson disease. JAMA Neurol 2015; 72 (11) 1354-1360
  • 11 Pollak P, Benabid AL, Gross C , et al. Effets de la stimulation du noyau sous–thalamique dans la maladie de Parkinson. Rev Neurol (Paris) 1993; 149 (3) 175-176
  • 12 Bergman H, Wichmann T, DeLong MR. Reversal of experimental parkinsonism by lesions of the subthalamic nucleus. Science 1990; 249 (4975): 1436-1438
  • 13 Siegfried J, Lippitz B. Bilateral chronic electrostimulation of ventroposterolateral pallidum: a new therapeutic approach for alleviating all parkinsonian symptoms. Neurosurgery 1994; 35 (6) 1126-1129 , discussion 1129–1130
  • 14 Esselink RAJ, de Bie RMA, de Haan RJ , et al. Unilateral pallidotomy versus bilateral subthalamic nucleus stimulation in PD: a randomized trial. Neurology 2004; 62 (2) 201-207
  • 15 Blomstedt P, Hariz GM, Hariz MI. Pallidotomy versus pallidal stimulation. Parkinsonism Relat Disord 2006; 12 (5) 296-301
  • 16 Xu F, Ma W, Huang Y, Qiu Z, Sun L. Deep brain stimulation of pallidal versus subthalamic for patients with Parkinson's disease: a meta-analysis of controlled clinical trials. Neuropsychiatr Dis Treat 2016; 12: 1435-1444
  • 17 Deep-Brain Stimulation for Parkinson's Disease Study Group. Deep-brain stimulation of the subthalamic nucleus or the pars interna of the globus pallidus in Parkinson's disease. N Engl J Med 2001; 345 (13) 956-963
  • 18 Rodriguez-Oroz MC, Obeso JA, Lang AE , et al. Bilateral deep brain stimulation in Parkinson's disease: a multicentre study with 4 years follow-up. Brain 2005; 128 (Pt 10): 2240-2249
  • 19 Moro E, Lozano AM, Pollak P , et al. Long-term results of a multicenter study on subthalamic and pallidal stimulation in Parkinson's disease. Mov Disord 2010; 25 (5) 578-586
  • 20 Odekerken VJJ, van Laar T, Staal MJ , et al. Subthalamic nucleus versus globus pallidus bilateral deep brain stimulation for advanced Parkinson's disease (NSTAPS study): a randomised controlled trial. Lancet Neurol 2013; 12 (1) 37-44
  • 21 Odekerken VJJVJJ, Boel JA, Schmand BABA , et al; NSTAPS study group. GPi vs STN deep brain stimulation for Parkinson disease: three-year follow-up. Neurology 2016; 86 (8) 755-761
  • 22 Follett KA, Weaver FM, Stern M , et al; CSP 468 Study Group. Pallidal versus subthalamic deep-brain stimulation for Parkinson's disease. N Engl J Med 2010; 362 (22) 2077-2091
  • 23 Okun MS, Fernandez HH, Wu SS , et al. Cognition and mood in Parkinson's disease in subthalamic nucleus versus globus pallidus interna deep brain stimulation: the COMPARE trial. Ann Neurol 2009; 65 (5) 586-595
  • 24 Diamond A, Shahed J, Jankovic J. The effects of subthalamic nucleus deep brain stimulation on parkinsonian tremor. J Neurol Sci 2007; 260 (1-2): 199-203
  • 25 Blahak C, Wöhrle JC, Capelle HH , et al. Tremor reduction by subthalamic nucleus stimulation and medication in advanced Parkinson's disease. J Neurol 2007; 254 (2) 169-178
  • 26 Deuschl G, Schade-Brittinger C, Krack P , et al; German Parkinson Study Group, Neurostimulation Section. A randomized trial of deep-brain stimulation for Parkinson's disease. N Engl J Med 2006; 355 (9) 896-908
  • 27 Liu Y, Li W, Tan C , et al. Meta-analysis comparing deep brain stimulation of the globus pallidus and subthalamic nucleus to treat advanced Parkinson disease. J Neurosurg 2014; 121 (3) 709-718
  • 28 Sako W, Miyazaki Y, Izumi Y, Kaji R. Which target is best for patients with Parkinson's disease? A meta-analysis of pallidal and subthalamic stimulation. J Neurol Neurosurg Psychiatry 2014; 85 (9) 982-986
  • 29 Anderson VC, Burchiel KJ, Hogarth P, Favre J, Hammerstad JP. Pallidal vs subthalamic nucleus deep brain stimulation in Parkinson disease. Arch Neurol 2016; ;•••: 62
  • 30 Weaver FM, Follett KA, Stern M , et al; CSP 468 Study Group. Randomized trial of deep brain stimulation for Parkinson disease: thirty-six-month outcomes. Neurology 2012; 79 (1) 55-65
  • 31 Weaver FM, Follett K, Stern M , et al; CSP 468 Study Group. Bilateral deep brain stimulation vs best medical therapy for patients with advanced Parkinson disease: a randomized controlled trial. JAMA 2009; 301 (1) 63-73
  • 32 Portman AT, van Laar T, Staal MJ, Rutgers AWF, Journee HL, Leenders KL. Chronic stimulation of the subthalamic nucleus increases daily on-time without dyskinesia in advanced Parkinson's disease. Parkinsonism Relat Disord 2006; 12 (3) 143-148
  • 33 Oyama G, Foote KD, Jacobson IV CE , et al. GPi and STN deep brain stimulation can suppress dyskinesia in Parkinson's disease. Parkinsonism Relat Disord 2012; 18 (7) 814-818
  • 34 Combs HL, Folley BS, Berry DTR , et al. Cognition and depression following deep brain stimulation of the subthalamic nucleus and globus pallidus pars internus in Parkinson's disease: a meta-analysis. Neuropsychol Rev 2015; 25 (4) 439-454
  • 35 Dietz J, Noecker AM, McIntyre CC , et al. Stimulation region within the globus pallidus does not affect verbal fluency performance. Brain Stimulat 2013; 6 (3) 248-253
  • 36 Gervais-Bernard H, Xie-Brustolin J, Mertens P , et al. Bilateral subthalamic nucleus stimulation in advanced Parkinson's disease: five year follow-up. J Neurol 2009; 256 (2) 225-233
  • 37 York MK, Dulay M, Macias A , et al. Cognitive declines following bilateral subthalamic nucleus deep brain stimulation for the treatment of Parkinson's disease. J Neurol Neurosurg Psychiatry 2008; 79 (7) 789-795
  • 38 Rothlind JC, Cockshott RW, Starr PA, Marks Jr WJ. Neuropsychological performance following staged bilateral pallidal or subthalamic nucleus deep brain stimulation for Parkinson's disease. J Int Neuropsychol Soc 2007; 13 (1) 68-79
  • 39 Smeding HM, Speelman JD, Koning-Haanstra M , et al. Neuropsychological effects of bilateral STN stimulation in Parkinson disease: a controlled study. Neurology 2006; 66 (12) 1830-1836
  • 40 Kalteis K, Standhardt H, Kryspin-Exner I, Brücke T, Volc D, Alesch F. Influence of bilateral Stn-stimulation on psychiatric symptoms and psychosocial functioning in patients with Parkinson's disease. J Neural Transm (Vienna) 2006; 113 (9) 1191-1206
  • 41 Kleiner-Fisman G, Herzog J, Fisman DN , et al. Subthalamic nucleus deep brain stimulation: summary and meta-analysis of outcomes. Mov Disord 2006; 21 (Suppl 14): S290-S304
  • 42 Erola T, Heikkinen ER, Haapaniemi T, Tuominen J, Juolasmaa A, Myllylä VV. Efficacy of bilateral subthalamic nucleus (STN) stimulation in Parkinson's disease. Acta Neurochir (Wien) 2006; 148 (4) 389-394
  • 43 Visser-Vandewalle V, van der Linden C, Temel Y , et al. Long-term effects of bilateral subthalamic nucleus stimulation in advanced Parkinson disease: a four year follow-up study. Parkinsonism Relat Disord 2005; 11 (3) 157-165
  • 44 Massano J, Bronstein JM. Writeclick: neuropsychological outcome after deep brain stimulation for Parkinson disease. Neurology 2016; 86 (16) 1563-1564
  • 45 Troche MS, Brandimore AE, Foote KD , et al. Swallowing outcomes following unilateral STN vs. GPi surgery: a retrospective analysis. Dysphagia 2014; 29 (4) 425-431
  • 46 Volkmann J, Albanese A, Kulisevsky J , et al. Long-term effects of pallidal or subthalamic deep brain stimulation on quality of life in Parkinson's disease. Mov Disord 2009; 24 (8) 1154-1161
  • 47 van Nuenen BFL, Esselink RAJ, Munneke M, Speelman JD, van Laar T, Bloem BR. Postoperative gait deterioration after bilateral subthalamic nucleus stimulation in Parkinson's disease. Mov Disord 2008; 23 (16) 2404-2406
  • 48 Okun MS, Tagliati M, Pourfar M , et al. Management of referred deep brain stimulation failures: a retrospective analysis from 2 movement disorders centers. Arch Neurol 2005; 62 (8) 1250-1255
  • 49 Williams NR, Foote KD, Okun MS. STN vs. GPi deep brain stimulation: translating the rematch into clinical practice. Mov Disord Clin Pract (Hoboken) 2014; 1 (1) 24-35
  • 50 van der Marck MA, Munneke M, Mulleners W , et al; IMPACT study group. Integrated multidisciplinary care in Parkinson's disease: a non-randomised, controlled trial (IMPACT). Lancet Neurol 2013; 12 (10) 947-956
  • 51 Morishita T, Rahman M, Foote KD , et al. DBS candidates that fall short on a levodopa challenge test: alternative and important indications. Neurologist 2011; 17 (5) 263-268
  • 52 Martinez-Ramirez D, Okun MS. Rationale and clinical pearls for primary care doctors referring patients for deep brain stimulation. Gerontology 2014; 60 (1) 38-48
  • 53 Okun MS, Foote KD. Parkinson's disease DBS: what, when, who and why? The time has come to tailor DBS targets. Expert Rev Neurother 2010; 10 (12) 1847-1857
  • 54 Verhagen Metman L, Pal G, Slavin K. Surgical treatment of Parkinson's disease. Curr Treat Options Neurol 2016; 18 (11) 49
  • 55 Volkmann J, Chabardes S, Steinke GK, Carcieri S. is 375 DIRECT DBS: a prospective, multicenter clinical trial with blinding for a directional deep brain stimulation lead. Neurosurgery 2016; 63 (1) (Suppl. 01) 211-212
  • 56 Deuschl G, Schüpbach M, Knudsen K , et al. Stimulation of the subthalamic nucleus at an earlier disease stage of Parkinson's disease: concept and standards of the EARLYSTIM-study. Parkinsonism Relat Disord 2013; 19 (1) 56-61
  • 57 Mestre TA, Espay AJ, Marras C, Eckman MH, Pollak P, Lang AE. Subthalamic nucleus-deep brain stimulation for early motor complications in Parkinson's disease-the EARLYSTIM trial: early is not always better. Mov Disord 2014; 29 (14) 1751-1756
  • 58 Thobois S, Ardouin C, Lhommée E , et al. Non-motor dopamine withdrawal syndrome after surgery for Parkinson's disease: predictors and underlying mesolimbic denervation. Brain 2010; 133 (Pt 4): 1111-1127
  • 59 Zibetti M, Torre E, Cinquepalmi A , et al. Motor and nonmotor symptom follow-up in parkinsonian patients after deep brain stimulation of the subthalamic nucleus. Eur Neurol 2007; 58 (4) 218-223
  • 60 Higuchi MA, Martinez-Ramirez D, Morita H , et al. Interdisciplinary Parkinson's disease deep brain stimulation screening and the relationship to unintended hospitalizations and quality of life. PLoS One 2016; 11 (5) e0153785
  • 61 Picillo M, Lozano AM, Kou N, Puppi Munhoz R, Fasano A. Programming deep brain stimulation for Parkinson's disease: the Toronto Western Hospital algorithms. Brain Stimulat 2016; 9 (3) 425-437
  • 62 Farris S, Giroux M. Retrospective review of factors leading to dissatisfaction with subthalamic nucleus deep brain stimulation during long-term management. Surg Neurol Int 2013; 4: 69 . doi: 10.4103/2152-7806.112612
  • 63 Martinez-Ramirez D, Morishita T, Zeilman PR, Peng-Chen Z, Foote KD, Okun MS. Atrophy and other potential factors affecting long term deep brain stimulation response: a case series. PLoS One 2014; 9 (10) e111561
  • 64 Ughratdar I, Samuel M, Ashkan K. Technological advances in deep brain stimulation. J Parkinsons Dis 2015; 5 (3) 483-496
  • 65 Alonso F, Latorre MA, Göransson N, Zsigmond P, Wårdell K. Investigation into deep brain stimulation lead designs: a patient-specific simulation study. Brain Sci 2016; 6 (3) 39
  • 66 Steigerwald F, Müller L, Johannes S, Matthies C, Volkmann J. Directional deep brain stimulation of the subthalamic nucleus: a pilot study using a novel neurostimulation device. Mov Disord 2016; 31 (8) 1240-1243
  • 67 Hariz M, Blomstedt P, Zrinzo L. Future of brain stimulation: new targets, new indications, new technology. Mov Disord 2013; 28 (13) 1784-1792
  • 68 Contarino MF, Brinke TR, Mosch A , et al. How many patients would benefit from steering technology for deep brain stimulation?. Brain Stimulat 2016; 9 (1) 144-145
  • 69 Akbar U, Raike RS, Hack N , et al. Randomized, blinded pilot testing of nonconventional stimulation patterns and shapes in Parkinson's disease and essential tremor: evidence for further evaluating narrow and biphasic pulses. Neuromodulation 2016; 19 (4) 343-356
  • 70 de Hemptinne C, Ryapolova-Webb ES, Air EL , et al. Exaggerated phase-amplitude coupling in the primary motor cortex in Parkinson disease. Proc Natl Acad Sci U S A 2013; 110 (12) 4780-4785
  • 71 Bronte-Stewart H, Barberini C, Koop MM, Hill BC, Henderson JM, Wingeier B. The STN beta-band profile in Parkinson's disease is stationary and shows prolonged attenuation after deep brain stimulation. Exp Neurol 2009; 215 (1) 20-28
  • 72 Bour LJ, Lourens MAJ, Verhagen R , et al. Directional recording of subthalamic spectral power densities in Parkinson's disease and the effect of steering deep brain stimulation. Brain Stimul 2015; 8 (4) 730-741
  • 73 De Jesus S, Almeida L, Peng-Chen Z, Okun MS, Hess CW. Novel targets and stimulation paradigms for deep brain stimulation. Expert Rev Neurother 2015; 15 (9) 1067-1080
  • 74 Swann NC, de Hemptinne C, Miocinovic S , et al. Gamma oscillations in the hyperkinetic state detected with chronic human brain recordings in Parkinson's disease. J Neurosci 2016; 36 (24) 6445-6458
  • 75 Deeb W, Giordano JJ, Rossi PJ , et al. Proceedings of the Fourth Annual Deep Brain Stimulation Think Tank: A Review of Emerging Issues and Technologies. Front Integr Neurosci 2016; 10 (November): 38
  • 76 Little S, Beudel M, Zrinzo L , et al. Bilateral adaptive deep brain stimulation is effective in Parkinson's disease. J Neurol Neurosurg Psychiatry 2016; 87 (7) 717-721
  • 77 Ashkan K, Samuel M, Reddy P, Ray Chaudhuri K. The impact of deep brain stimulation on the nonmotor symptoms of Parkinson's disease. J Neural Transm (Vienna) 2013; 120 (4) 639-642
  • 78 Chieng LO, Madhavan K, Wang MY. Deep brain stimulation as a treatment for Parkinson's disease related camptocormia. J Clin Neurosci 2015; 22 (10) 1555-1561
  • 79 Shih LC, Vanderhorst VG, Lozano AM, Hamani C, Moro E. Improvement of pisa syndrome with contralateral pedunculopontine stimulation. Mov Disord 2013; 28 (4) 555-556